Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That basin relief, maximum is the elevation difference between basin mouth and the highest point within a basin perimeter [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
Engineering challenges in Karst, Stevanović, Zoran; Milanović, Petar
See all featured articles
Featured articles from other Geoscience Journals
Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy), Dimuccio, L.A.; Rodrigues, N.; Larocca, F.; Pratas, J.; Amado, A.M.; Batista de Carvalho, L.A.
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
See all featured articles from other geoscience journals

Search in KarstBase

Your search for geophysical methods (Keyword) returned 19 results for the whole karstbase:
Showing 1 to 15 of 19
Geophysical methods used in solving some geological problems encountered in construction of the Treblinisca water power plant (Yugoslavia), 1966, Arandjelovic D.

Application of geophysical methods to hydrogeological problems in Dinaric karst of Yugoslavia, 1984, Arandjelovic D.

The use of geophysical surveying methods in the detection of natural cavities and mineshafts, 1987, Mccann D. M. , Jackson P. D. , Culshaw M. G. ,
The use of geophysical methods for the location of cavities and mineshafts is reviewed in relation to engineering problems at the site investigation stage. Their success is limited by the resolution and penetration achieved by the particular method applied in a given situation. It is shown that no one single geophysical method will provide the answer to all the problems associated with cavity location but considerable improvement can be achieved by the application of several methods to a given problem. It is suggested that for most standard geophysical methods it is possible to detect a cavity whose depth of burial is less than twice its effective diameter. The concept of effective diameter is shown to be of considerable importance since the presence of the cavity or mineshaft does affect the physical properties of the surrounding rock mass and, hence, gives rise to a far larger anomalous zone than that produced by the cavity on its own

The detection of cavities using the microgravity technique: case histories from mining and karstic environments, 1997, Bishop I, Styles P, Emsley Sj, Ferguson Ns,
The presence of mining-related cavities (workings, shafts and tunnels) or karstic (solution cavities and sinkholes in limestone) within the top 100 m in the rock mass restricts land utilisation, and their migration to the surface may damage property or services or cause loss of life. Confirmation of features marked on existing plans prior to design and construction may be sufficient but it is often necessary to determine the detailed sub-surface structure. The standard method of siteinvestigation is to drill a pattern of boreholes to locate the spatial extent of any cavities. However, unless the spacing is less than the cavity dimensions it is possible to miss it completely. A cavity may be filled with air, water, or collapse material resulting in a contrast in physical properties which may be detected using appropriate geophysical methods. One powerful technique is microgravity which locates areas of contrasting sub-surface density from surface measurements of the earth's gravity. Although the method is fundamentally simple, measurement of the minute variations in gravity (1 in 108) requires sensitive instruments, careful data acquisition, and data reduction and digital data analysis. Final interpretation must be performed in conjunction with independent information about the site's history and geology. This paper presents three examples in both mining and karstic environments demonstrating that microgravity is a very effective technique for detectingand delineating cavities in the sub-surface

Modelling of karst structures by geophysical methods. An example: the doline of S Pietro dei Monti (Western Liguria), 1998, Armadillo E, Massa F, Caneva G, Gambetta M, Bozzo E,
Integrated geophysical investigations of karat structures were carried out in Liguria and Piedmont (NW Italy); this paper refers to the S. Pietro dei Monti doline, in the karat area of Mt. Carmo (Savona). The techniques used in the integrated study were magnetics, electromagnetics and seismic refraction. The target was to identify, without drilling, the nature of the doline, for example if it is of dissolution or collapse type. A preliminary susceptibility sampling of the outcrop and topsoil and the diffuse fractures with a probable water seepage suggested magnetics and VLF electromagnetics. Such methods applied in an area with an extremely low cultural noise allowed modelling of the buried structure of the doline

An example of identifying karst groundwater flow, 1998, Stevanovic Z. , Dragisic V. ,
Hydrogeological investigations for the purpose of regulating the karst aquifer were carried out in the mountain massif of Kucaj in the Carpatho-Balkan range of eastern Serbia. Different geo-physical methods were applied in order to identify the position of karstified zones with active circulation of karst underground streams. Especially good results were obtained by using the spontaneous potential method for the exploration and construction of boreholes and wells. In the valleys of Crni Timok and Radovanska reka the measurements have been carried out upstream along the whole width of the alluvium to the limestone periphery. A number of positive and negative anomalies have been recorded. In the centres of positive anomalies several boreholes were located: HG-19 (centre of anomaly 30 mV, total length of the biggest cavern is 9 m); HG-1 ( mV, cavern of 2m); HG-15 (max, ? mV, effective cavernousness is 17%)

Locating dissolution features in the Chalk, 2000, Matthews M. C. , Clayton C. R. I. , Rigbyjones J. ,
Dissolution features are common in the Chalk and may result in differential or collapse settlement of foundations if undetected. Dissolution pipes and cavities may be easily missed by conventional drilling methods. Probing and geophysical methods of investigation offer an attractive alternative due to their ability to cover large areas rapidly and thus minimize cost. The success of geophysical methods depends on many factors, principally the size of the feature in relation to the depth of burial and the cover material. This paper describes a study of dynamic probing and a number of geophysical methods used to locate dissolution features at two sites with contrasting ground conditions. The first site contained a bowl-shaped doline over a clay-filled dissolution pipe beneath a relatively thin soil cover. At the second site there was a thick, predominantly granular cover material that contained cavities which had migrated from dissolution pipes in the chalk below. Ground truth data from trenching was obtained to provide a basis for evaluating the investigation methods used. The ability of both dynamic probing and geophysical methods to locate and map dissolution features is discussed

Possibilities of geoelectrical and seismo-electrical monitoring in investigations of the karst phenomena, 2002, Bogolubov An, Kamshilin An, Volkova En,
One of the main problems of modern karst investigations is to forecast a place and time of possible depression formation, A solution to this problem requires investigations of karst dynamics by different methods, including geophysical methods. Karst dynamics is determined, in general, by movement of underground waters. At the same time, it is known that electric fields and electric properties of rocks are very sensitive to variations of fluid amounts and their characteristics. Thus, geoelectrical methods of monitoring are useful for investigation of karst dynamics in general and for forecasting karst depressions in particular. Authors have introduced two methods of geophysical monitoring: geoelectrical and seismo-electrical. The main features of instruments and methods of measurement are explained, and the results of the field investigations are shown. The possibilities of the application of these methods to karst dynamics investigations are discussed

Un karst sous la glace de l'Antarctide?, 2003, Bini A. , Forieri A. , Remy F. , Tabacco I. E. , Zirizzotti A. , Zuccoli L.
ARE THERE KARSTIC LANDFORMSUNDER ANTARCTICICECAP? - A new bedrock map of the Dome C area based on all radar data collected during Italian Antarctic Expeditions in 1995, 1997, 1999 and 2001 is presented. The map can clearly distinguish the Dome C plateau, along with some valleys and ridges develop. The plateau develops at three different altimetric levels and its morphology is characterised by hills and closed depressions. There are no visible features, which can be ascribed to glacial erosion or deposition. The major valley is 15 km wide and 500 m deep; its axis is parallel to that of other valleys and ridges in the plateau. The valley bottom is not flat, but contains a saddle in its centre. The morphology of the major valley could be considered as a relict one, which was not modified by the overlying ice cap. Two big ridges, characterised by hills, saddles and depressions, he near the boundaries of the area. The hill and depression landscape may be the result of two different processes the weathering of granitic rocks, with the development of a Demi-oranges and inselberg landscape, or the karstification of limestones, and development of a cone karst. The karstic hypothesis should be the more suitable, but it is impossible to exclude the granitic rock weathering. Both proposed genetic hypotheses calling for a warm- humid climate and a long period of stability in a continental environment. Consequently, the ice cap did not largely modify the landscape.

Localization of saturated karst aquifer with magnetic resonance sounding and resistivity imagery, 2003, Vouillamoz J. M. , Legchenko A. , Albouy Y. , Bakalowicz M. , Baltassat J. M. , Alfares W. ,
To answer one of the main questions of hydrogeologists implementing boreholes or working on pollution questions in a karst environment-i.e., where is the ground water?-numerous tools including geophysics are used. However, the contribution of geophysics differs from one method to the other. The magnetic resonance sounding (MRS) method has the advantage of direct detection of ground water over other geophysical methods. Eight MRSs were implemented over a known karst conduit explored and mapped by speleologists to estimate the MRS ability to localize ground water. Two direct current resistivity imageries (DC-2D imagery) were also implemented to check their capability to map a known cave. We found that the MRS is a useful tool to locate ground water in karst as soon as the quantity of water is enough to be detected. The threshold quantity is a function of depth and it was estimated by forward modeling to propose a support graph to hydrogeologists. The measured MRS's signals could be used to calculate transmissivity and permeability estimators. These estimators were used to map and to draw a cross section of the case study site, which underline accurately the known karst conduit location and depth. We also found that the DC-2D imagery could underline the karst structures: It was able to detect the known cave through its associated faults. We prepared a computer simulation to check the depth of such a cave to induce resistivity anomaly which could be measured in similar conditions

Geophysical characteristics of epikarst: case studies from Zagros Mts. (Iran) and the Koneprusy region (Czech Republic), 2003, Bosá, K Pavel, Beneš, Vojtech

Characteristics of epikarst zone were studied by geophysical methods, especially refraction seismics, combined with electrical resistivity and gravimetry measurements. Applied methods were equal in both regions, so comparable results were obtained. The interpreted seismic boundaries follow the basal plane of epikarst (s.l.) and limit the epikarst zone from the geophysical point of view, i.e. zone with comparably low seismic velocities (mostly 1,000 to 3,000 m.s-1). The thickness of epikarst in the Czech Karst - the Koneprusy Devonian - is from 5 to about 60 m. The epikarst in Zagros Mts. reached up to 180 m (Cretaceous lmst.). The differences of character and vertical extent of epikarst zone depend on entirely different geological structure and geomorphological setting (relief) and evolution of both sites, which established different conditions for the release of residual stress in the limestone massifs.

Improved karst exploration by VLF-EM-gradient survey: comparison with other geophysical methods, 2005, Bosch Fp, Muller I,
The knowledge of size, density and both orientation and vertical distribution of fractures as well as their opening and filling material or overburden thickness is a valuable contribution to estimating hydraulic conductivity and to evaluating the vulnerability and protection strategy of karst aquifers. To obtain some of these parameters and to ascertain high-permeability zones, the Very Low Frequency-Electromagnetic Gradient (VLF-EM GRAD) method was applied, together with Radio Frequency-Electromagnetics (RF-EM), Radioinagnetotellurics (RMT), Geoelectrical Tomography and refraction seismics, over a karstic terrain in the Swiss Jura Mountains. In this area, karst springs infiltrate a porous aquifer. This survey investigated the highly permeable karst structures, which provide fast water-infiltration pathways into the karstic flow network. A dye tracer test validated the geophysical results. The results show the efficiency and reliability particularly of the VLF-EM GRAD method, for high-resolution investigation at shallow depths and for its potential for fast data acquisition over large surfaces at catchment area scale without ground contact

Sinkholes and the Engineering and Environmental Impacts of Karst, 2005, Beck B. F.

Conference Proceedings

Sinkholes and the Engineering and Environmental Impacts of Karst Contains over 70 papers addressing karst topography which impacts water resources, waste disposal, foundation stability, and a multitude of other geotechnical and environmental issues. These papers were presented at the 10th Multidisciplinary Conference held September 24-28, 2005 in San Antonio, Texas and Sponsored by the Geo-Institute of ASCE, P. E. LaMoreaux & Associates, Inc. and Edwards Aquifer Authority. The goal of this conference was to share knowledge and experience among disciplines by emphasizing practical applications and case studies. This proceedings will benefit environmental and geotechnical engineers, and others involved in water resources, water disposal, and foundation stability issues.


Application of Geophysical Logging Techniques for Multi-Channel Well Design and Installation in a Karst Aquifer (by Frank Bogle, ...)

Case Studies of Massive Flow Conduits in Karst Limestone (by Jim L. Lolcama)

A Case Study of the Samanalawewa Reservoir on the Walawe River in an Area of Karst in Sri Lanka (by K. Laksiri, ...)

Characterization and Water Balance of Internal Drainage Sinkholes (by Nico M. Hauwert, ...)

Characterization of Desert Karst Terrain in Kuwait and the Eastern Coastline of the Arabian Penninsula (by Waleed Abdullah, ...)

Characterization of a Sinkhole Prone Retention Pond Using Multiple Geophysical Surveys and Closely Spaced Borings (by Nick Hudyma, ...)

Combining Surface and Downhole Geophysical Methods to Identify Karst Conditions in North-Central Iowa (by J. E. Wedekind, ...)

Complexities of Flood Mapping in a Sinkhole Area (by C. Warren Campbell, P.E.)

Conceptualization and Simulation of the Edwards Aquifer, San Antonio Region, Texas (by R. J. Lindgren, ...)

Database Development and GIS Modeling to Develop a Karst Vulnerability Rating for I-66, Somerset to London, KY (by Michael A. Krokonko, ...)

Design and Construction of the Foundations for the Watauga Raw Water Intake Facility in Karstic Limestone near the City of Johnson City, TN (by Tony D. Canale, P.E., ...)

Detection of Three-Dimensional Voids in Karstic Ground (by Derek V. Morris, P.E., ...)

Development and Evolution of Epikarst in Mid-Continent US Carbonates (by Tony L. Cooley, P.E.)

Dye Tracing Sewage Lagoon Discharge in a Sandstone Karst, Askov, Minnesota (by Emmit Calvin Alexander, Jr., ...)

The Effectiveness of GPR in Sinkhole Investigations (by E. D. Zisman, P.E., ...)

Effects of Anthropogenic Modification of Karst Soil Texture on the Water Balance of ?Alta Murgia? (Apulia, Italy) (by F. Canora, ...)

Environmental Isotope Study on Recharge and Groundwater Residence Time in a covered Ordovician Carbonate Rock (by Zhiyuan Ma, ...)

Error and Technique in Fluorescent dye Tracing (by Chris Smart)

Essential Elements of Estimating Engineering Properties of Karst for Foundation Design (by Ramanuja Chari Kannan, P.E., Fellow, ASCE)

Estimating Grout Quantities for Residential Repairs in Central Florida Karst (by Larry D. Madrid, P.E., ...)

Evaluation of Groundwater Residence Time in a Karstic Aquifer Using Environmental Tracers: Roswell Artesian Basin, New Mexico (by Lewis Land)

Experience of Regional Karst Hazard and Risk Assessment in Russia (by A. L. Ragozin, ...)

Experimental Study of Physical Models for Sinkhole Collapses in Wuhan, China (by Mingtang Lei, ...)

Fractal Scaling of Secondary Porosity in Karstic Exposures of the Edwards Aquifer (by Robert E. Mace, ...)

The Geological Characteristics of Buried Karst and Its Impact on Foundations in Hong Kong, China (by Steve H. M. Chan, ...)

Geophysical Identification of Evaporite Dissolution Structures Beneath a Highway Alignment (by M. L. Rucker, ...)

Geotechnical Analysis in Karst: The Interaction between Engineers and Hydrogeologists (by R. C. Bachus, P.E.)

The Gray Fossil Site: A Spectacular Example in Tennessee of Ancient Regolith Occurrences in Carbonate Terranes, Valley and Ridge Subpovince, South Appalachians U.S.A. (by G. Michael Clark, ...)

Ground-Water Basin Catchment Delineation by Bye Tracing, Water Table Mapping, Cave Mapping, and Geophysical Techniques: Bowling Green Kentucky (by Nicholas C. Crawford)

Groundwater Flow in the Edwards Aquifer: Comparison of Groundwater Modeling and Dye Trace Results (by Brian A. Smith, ...)

Grouting Program to Stop Water Flow through Karstic Limestone: A Major Case History (by D. M. Maciolek)

Highway Widening in Karst (by M. Zia Islam, P.E., ...)

How Karst Features Affect Recharge? Implication for Estimating Recharge to the Edwards Aquifer (by Yun Huang, ...)

Hydrogeologic Investigation of Leakage through Sinkholes in the Bed of Lake Seminole to Springs Located Downstream from Jim Woodruff Dam (by Nicholas C. Crawford, ...)

The Hydrologic Function of the soil and Bedrock System at Upland Sinkholes in the Edwards Aquifer Recharge Zone of South-Central Texas (by A. L. Lindley)

An Integrated Geophysical Approach for a Karst Characterization of the Marshall Space Flight Center (by Lynn Yuhr, ...)

Integrated Geophysical Surveys Applied to Karstic Studies Over Transmission Lines in San Antonio, Texas (by Mustafa Saribudak, ...)

Judge Dillon and Karst: Limitations on Local Regulation of Karst Hazards (by Jesse J. Richardson, Jr.)

Karst Groundwater Resource and Advantages of its Utilization in the Shaanbei Energy Base in Shaanxi Province, China (by Yaoguo Wu, ...)

Karst Hydrogeology and the Nature of Reality Revisited: Philosophical Musings of a Less Frustrated Curmudgeon (by Emmit Calvin Alexander, Jr.)

Karst in Appalachia ? A Tangled Zone: Projects with Cave-Sized Voids and Sinkholes (by Clay Griffin, ...)

Karstic Features of Gachsaran Evaporites in the Region of Ramhormoz, Khuzestan Province, in Southwest Iran (by Arash Barjasteh)

Large Perennial Springs of Kentucky: Their Identification, Base Flow, Catchment, and Classification (by Joseph A. Ray, ...)

Large Plot Tracing of Subsurface Flow in the Edwards Aquifer Epikarst (by P. I. Taucer, ...)
Lithology as a Predictive Tool of Conduit Morphology and Hydrology in Environmental Impact Assessments (by George Veni)

Metadata Development for a Multi-State Karst Feature Database (by Yongli Gao, ...)

Micropiling in Karstic Rock: New CMFF Foundation Solution Applied at the Sanita Factory (by Marc Ballouz)

Modeling Barton Springs Segment of the Edwards Aquifer Using MODFLOW-DCM (by Alexander Y. Sun, ...)

Multi-Level Monitoring Well Completion Technologies and Their Applicability in Karst Dolomite (by Todd Kafka, ...)

National-Scale Risk Assessment of sinkhole Hazard in China (by Xiaozhen Jiang, ...)

New Applications of Differential Electrical Resistivity Tomography and Time Domain Reflectometry to Modeling Infiltration and Soil Moisture in Agricultural Sinkholes (by B. F. Schwartz, ...)

Non-Regulatory Approaches to Development on Karst (by Jesse J. Richardson, Jr., ...)

PA State Route 33 Over Bushkill Creek: Structure Failure and Replacement in an Active Sinkhole Environment (by Kerry W. Petrasic, P.E.)

Quantifying Recharge via Fractures in an Ashe Juniper Dominated Karst Landscape (by Lucas Gregory, ...)

Quantitative Groundwater Tracing and Effective Numerical Modeling in Karst: An Example from the Woodville Karst Plain of North Florida (by Todd R. Kincaid, ...)

Radial Groundwater Flow at Landfills in Karst (by J. E. Smith)

Residual Potential Mapping of Contaminant Transport Pathways in Karst Formations of Southern Texas (by D. Glaser, ...)

Resolving Sinkhole Issues: A State Government Perspective (by Sharon A. Hill)

Shallow Groundwater and DNAPL Movement within Slightly Dipping Limestone, Southwestern Kentucky (by Ralph O. Ewers, ...)

Sinkhole Case Study ? Is it or Isn?t it a Sinkhole? (by E. D. Zisman, P.E.)

Sinkhole Occurrence and Changes in Stream Morphology: An Example from the Lehigh Valley Pennsylvania (by William E. Kochanov)

Site Characterization and Geotechnical Roadway Design over Karst: Interstate 70, Frederick County, Maryland (by Walter G. Kutschke, P.E., ...)

Soil Stabilization of the Valley Creek Trunk Sewer Relief Tunnel (by Jeffrey J. Bean, P.E., ...)

Some New Approaches to Assessment of Collapse Risks in Covered Karsts (by Vladimir Tolmachev, ...)

Spectral Deconvolution and Quantification of Natural Organic Material and Fluorescent Tracer Dyes (by Scott C. Alexander)

Springshed Mapping in Support of Watershed Management (by Jeffrey A. Green, ...)

Sustainable Utilization of Karst Groundwater in Feicheng Basin, Shandong Province, China (by Yunfeng Li, ...)

Transport of Colloidal and Solute Tracers in Three Different Types of Alpine Karst Aquifers ? Examples from Southern Germany and Slovenia (by N. Göppert, ...)

Use of the Cone Penetration Test for Geotechnical Site Characterization in Clay-Mantled Karst (by T. C. Siegel, ...)

The Utility of Synthetic Aperture Radar (SAR) Interferometry in Monitoring Sinkhole Subsidence: Subsidence of the Devil?s Throat Sinkhole Area (Nevada, USA) (by Rana A. Al-Fares)

Void Evolution in Soluble Rocks Beneath Dams Under Limited Flow Condition (by Emmanuel S. Pepprah, ...)

Using 2D inversion of magnetic resonance soundings to locate a water-filled karst conduit, 2006, Boucher M, Girard Jf, Legchenko A, Baltassat Jm, Dorfliger N, Chalikakis K,
SummaryA new methodology for magnetic resonance sounding (MRS) data acquisition and interpretation was developed for locating water-filled karst cavities. This methodology was used to investigate the Ouysse karst system in the Poumeyssens shaft in the Causse de Gramat (France). A new 2D numerical MRS response model was designed for improved accuracy over the previous 1D MRS approach. A special survey performed by cave divers confirmed the accuracy of the MRS results. Field results demonstrated that in favourable conditions (a low EM noise environment and a relatively shallow, large target) the MRS method, used with a coincident transmitter/receiver loop, can be an effective tool for locating a water-filled karst conduit. It was shown numerically that because an a priori orientation of the MRS profile with the karst conduit is used in the inversion scheme (perpendicular for instance), any error in this assumption introduces an additional error in locating the karst. However, the resulting error is within acceptable limits when the deviation is less than 30[deg]. The MRS results were compared with an electrical resistivity tomography (ERT) survey. It was found that in Poumeyssens, ERT is not able to locate the water-filled karst. On the other hand, ERT provides additional information about heterogeneities in the limestone

Contribution of geophysical methods to karst-system exploration: an overview, 2011, Chalikakis Konstantinos, Plagnes Valerie, Guerin Roger, Valois Remi, Bosch Frank P.

The karst environment is one of the most challenging in terms of groundwater, engineering and environmental issues. Geophysical methods can provide useful subsurface information in karst regions concerning, for instance, hazard estimation or groundwater exploration and vulnerability assessment. However, a karst area remains a very difficult environment for any geophysical exploration; selection of the best-suited geophysical method is not always straightforward, due to the highly variable and unpredictable target characteristics. The state of the art is presented, in terms of the contributions made by geophysical methods to karst-system exploration, based on extensive analysis of the published scientific results. This report is an overview and should be used as a preliminary methodological approach, rather than a guideline. 

Results 1 to 15 of 19
You probably didn't submit anything to search for