Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That meniscus is a free surface or interface formed by liquid in a capillary tube [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
Engineering challenges in Karst, Stevanović, Zoran; Milanović, Petar
See all featured articles
Featured articles from other Geoscience Journals
Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy), Dimuccio, L.A.; Rodrigues, N.; Larocca, F.; Pratas, J.; Amado, A.M.; Batista de Carvalho, L.A.
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
See all featured articles from other geoscience journals

Search in KarstBase

Your search for global climate (Keyword) returned 8 results for the whole karstbase:
BLUE HOLES - DEFINITION AND GENESIS, 1995, Mylroie J. E. , Carew J. L. , Moore A. I. ,
Blue holes are karst features that were initially described from Bahamian islands and banks, which have been documented for over 100 years. They are water-fined vertical openings in the carbonate rock that exhibit complex morphologies, ecologies, and water chemistries. Their deep blue color, for which they are named, is the result of their great depth, and they may lead to cave systems below sea level Blue holes are polygenetic in origin, having formed: by drowning of dissolutional sinkholes and shafts developed in the vadose zone; by phreatic dissolution along an ascending halocline; by progradational collapse upward from deep dissolution voids produced in the phreatic zone; or by fracture of the bank: margin. Blue holes are the cumulative result of carbonate deposition and dissolution cycles which have been controlled by Quaternary glacioeustatic fluctuations of sea-level. Blue holes have been widely studied during the past 30 years, and they have provided information regarding karst processes, global climate change, marine ecology, and carbonate geochemistry. The literature contains a wealth of references regarding blue holes that are at times misleading, and often confusing. To standardize use of the term blue hob, and to familiarize the scientific community with their nature, we herein define them as follows: ''Blue holes are subsurface voids that are developed in carbonate banks and islands; are open to the earth's surface; contain tidally-influenced waters of fresh, marine, or mixed chemistry; extend below sea level for a majority of their depth; and may provide access to submerged cave passages.'' Blue holes are found in two settings: ocean holes open directly into the present marine environment and usually contain marine water with tidal now; inland blue holes are isolated by present topography from surface marine conditions, and open directly onto the land surface or into an isolated pond or lake, and contain tidally-influenced water of a variety of chemistries from fresh to marine

Geochronology of late Pleistocene to Holocene speleothemsfrom central Texas: Implications for regional paleoclimate, 2001, Musgrove Marylynn, Banner Jay L. , Mack Larry E. , Combs Deanna M. , James Eric W. , Cheng Hai, Edwards R. Lawrence,
A detailed chronology for four stalagmites from three central Texas caves separated by as much as 130 km provides a 71 000-yr record of temporal changes in hydrology and climate. Mass spectrometric 238U-230Th and 235U-231Pa analyses have yielded 53 ages. The accuracy of the ages and the closed- system behavior of the speleothems are indicated by interlaboratory comparisons, concordance of 230Th and 231Pa ages, and the result that all ages are in correct stratigraphic order. Over the past 71 000 yr, the stalagmites have similar growth histories with alternating periods of relatively rapid and slow growth. The growth rates vary over more than two orders of magnitude, and there were three periods of rapid growth: 71-60 ka, 39-33 ka, and 24-12 ka. These growth-rate shifts correspond in part with global glacial-interglacial climatic shifts. Paleontological evidence indicates that around the Last Glacial Maximum (20 ka), climate in central Texas was cooler and wetter than at present. This wetter interval corresponds with the most recent period of increased growth rates in the speleothems, which is consistent with conditions necessary for speleothem growth. The temporal shift in wetness has been proposed to result from a southward deflection of the jet steam due to the presence of a continental ice sheet in central North America. This mechanism also may have governed the two earlier intervals of fast growth in the speleothems (and inferred wetter climate). Ice volumes were lower and temperatures in central North America were higher during these two earlier glacial intervals than during the Last Glacial Maximum, however. The potential effects of temporal variations in precession of Earth's orbit on regional effective moisture may provide an additional mechanism for increased effective moisture coincident with the observed intervals of increased speleothem growth. The stalagmites all exhibit a large drop in growth rate between 15 and 12 ka, and they show very slow growth up to the present, consistent with drier climate during the Holocene. These results illustrate that speleothem growth rates can reflect the regional response of a hydrologic system to regional and global climate variability

Rates of erosion and topographic evolution of the Sierra Nevada, California, inferred from cosmogenic Al-26 and Be-10 concentrations, 2005, Stock G. M. , Anderson R. S. , Finkel R. C. ,
Concentrations of cosmogenic Al-26 and Be-10 in cave sediments and bedrock surfaces, combined with studies of landscape morphology, elucidate the topographic history of the southern Sierra Nevada over the past 5 Ma. Caves dated by Al-26/Be-10 in buried sediments reveal that river incision rates were moderate to slow between c. 5 and 3 Ma (<= 0.07 mm a(-1)), accelerated between 3 and 1.5 Ma (c. 0.3 ram a(-1)), and then have subsequently become much slower (c. 0.02 mm a(-1)). Although the onset of accelerated incision coincides in time with both,postulated Pliocene tectonism and pronounced global climate change, we argue that it primarily represents the response to a discrete tectonic event between 3 and 5 Ma. Dated cave positions reveal that, prior to 3 Ma, river canyons displayed up to 1.6 km of local relief, suggesting that Pliocene rock uplift elevated pre-existing topography. Renewed incision beginning c. 3 Ma deepened canyons by up to 400 m, creating narrow inner gorges. Tributary streams exhibit strong convexities, indicating that the transient erosional response to Pliocene uplift has not yet propagated into upland surfaces. Concentrations of Al-26 and Be-10 in bare bedrock show that upland surfaces are eroding at slow rates of c. 0.01 mm a(-1). Over the past c. 3 Ma, upland surfaces eroded slowly while adjacent rivers incised rapidly, increasing local relief. Although relief production probably drove at least modest crestal uplift, considerable pre-Pliocene relief and low spatially averaged erosion rates suggest that climatically driven rock uplift is not sufficient to explain ail uplift implied by tilted markers at the western edge of the range. Despite the recent pulse of erosion, spatially averaged erosion rates are low, and have probably acted to preserve the broad topographic form of the Sierra Nevada throughout much of the late Cenozoic. Copyright (c) 2005 John Wiley & Sons, Ltd

Variation of karst spring discharge in the recent five decades as an indicator of global climate change: A case study at Shanxi, northern China, 2005, Guo Q. H. , Wang Y. X. , Ma T. , Li L. X. ,
Karst in Shanxi Province is representative of that in northern China, and karst water systems discharge in the form of springs that are among the most important sources for local water supply. Since the 1950s, attenuation has been the major trend of discharge variation of most karst springs at Shanxi. Based on the case study of 7 karst springs including Niangziguan, Xin'an, Guozhuang, Shentou, Jinci, Lancun, and Hongshan springs, the discharge variation process of karst springs was divided into natural fluctuation phase and anthropogenic impact phase. Discharge attenuation of the 7 karst springs was controlled mainly by climate and human activities, with their contributions being respectively about 60% and 40%. According to the difference of the effect of climate and human activities for each spring, attenuation modes of spring discharge fall into three types: natural process dominated attenuation type, exploitation induced process dominated attenuation type, and mixed attenuation type. The total restored discharge variation of 7 karst springs matched well with the global air temperature change in 1956-2000, clearly indicating the trend of global warming and aridity in the last several decades, and the analysis of discharge variation processes of karst springs can be used as a new tool for global change studies

Late Quaternary environmental and human events at En Gedi, reflected by the geology and archaeology of the Moringa Cave (Dead Sea area, Israel), 2007, Lisker, S. , Porat, R. , Davidovich, U. , Eshel, H. , Steinerik Lauritzen, S. E. , Frumkin

The Moringa Cave within Pleistocene sediments in the En Gedi area of the Dead Sea Fault Escarpment contains a sequence of various Pleistocene lacustrine deposits associated with higher-than-today lake levels at the Dead Sea basin. In addition it contains Chalcolithic remains and 5th century BC burials attributed to the Persian period, cemented and covered by Late Holocene travertine flowstone. These deposits represent a chain of Late Pleistocene and Holocene interconnected environmental and human events, echoing broader scale regional and global climate events. A major shift between depositional environments is associated with the rapid fall of Lake Lisan level during the latest Pleistocene. This exposed the sediments, providing for cave formation processes sometime between the latest Pleistocene (ca. 15 ka) and the Middle Holocene (ca. 4500 BC), eventually leading to human use of the cave. The Chalcolithic use of the cave can be related to a relatively moist desert environment, probably related to a shift in the location of the northern boundary of the Saharo-Arabian desert belt. The travertine layer was U?Th dated 2.46± 0.10 to 2.10±0.04 ka, in agreement with the archaeological finds from the Persian period. Together with the inner consistency of the dating results, this strongly supports the reliability of the radiometric ages. The 2.46?2.10 ka travertine deposition within the presently dry cave suggests a higher recharge of the Judean Desert aquifer, correlative to a rising Dead Sea towards the end of the 1st millennium BC. This suggests a relatively moist local and regional climate facilitating human habitation of the desert.


Using Geographic Information System to Identify Cave Levels and Discern the Speleogenesis of the Carter Caves Karst Area, Kentucky, 2011, Peterson E. , Dogwiler T. , Harlan L.

Cave level delineation often yields important insight into the speleogenetic history of a karst system. Various workers in the Mammoth Cave System (MCS) and in the caves of the Cumberland Plateau Karst (CPK) have linked cave level development in those karst systems with the Pleistocene evolution of the Ohio River. This research has shown that speleogenesis was closely related to the base level changes driven by changes in global climate. The Carter Caves Karst (CCK) in northeastern Kentucky has been poorly studied relative to the MCS to the west and the CPK karst to the east. Previously, no attempt had been made to delineate speleogenetic levels in the CCK and relate them to the evolution of the Ohio River. In an attempt to understand cave level development in CCK we compiled cave entrance elevations and locations. The CCK system is a fluviokarst typical of many karst systems formed in the Paleozoic carbonates of the temperate mid-continent of North America. The CCK discharges into Tygarts Creek, which ultimately flows north to join the Ohio River. The lithostratigraphic context of the karst is the Mississippian Age carbonates of the Slade Formation. Karst development is influenced by both bedding and structural controls. We hypothesize that cave level development is controlled by base level changes in the Ohio River, similar to the relationships documented in MCS and the karst of the Cumberland Plateau The location and elevation of cave entrances in the CCK was analyzed using a GIS and digital elevation models (DEMs). Our analysis segregated the cave entrances into four distinct elevation bands that we are interpreting as distinct cave levels. The four cave levels have mean elevations (relative to sea level) of 228 m (L1), 242 m (L2), 261 m (L3), and 276 m (L4). The highest level—L4—has an average elevation 72 m above the modern surface stream channel. The lowest level—L1—is an average of 24 m above the modern base level stream, Tygarts Creek. The simplest model for interpreting the cave levels is as a response to an incremental incision of the surface streams in the area and concomitant adjustment of the water table elevation. The number of levels we have identified in the CCK area is consistent with the number delineated in the MCS and CPK. We suggest that this points toward the climatically-driven evolution of the Ohio River drainage as controlling the speleogenesis of the CCK area 


Mapping permeability over the surface of the Earth, 2011, Gleeson T. , Smith L. , Moosdorf N. , Hartmann J. , Durr H. H. , Manning A. H. , Van Beek L. P. H. , Jellinek A. M.

Permeability, the ease of fluid flow through porous rocks and soils, is a fundamental but often poorly quantified component in the analysis of regional-scale water fluxes. Permeability is difficult to quantify because it varies over more than 13 orders of magnitude and is heterogeneous and dependent on flow direction. Indeed, at the regional scale, maps of permeability only exist for soil to depths of 1–2 m. Here we use an extensive compilation of results from hydrogeologic models to show that regional-scale (>5 km) permeability of consolidated and unconsolidated geologic units below soil horizons (hydrolithologies) can be characterized in a statistically meaningful way. The representative permeabilities of these hydrolithologies are used to map the distribution of near-surface (on the order of 100 m depth) permeability globally and over North America. The distribution of each hydrolithology is generally scale independent. The near-surface mean permeability is of the order of 5 x 10-14 m2. The results provide the first global picture of near-surface permeability and will be of particular value for evaluating global water resources and modeling the influence of climate-surface-subsurface interactions on global climate change.

 

Paleoclimate Records from Speleothems, 2012, Polyak Victor J. , Denniston Rhawn F.

Speleothems, mainly stalagmites, are yielding continuous, high-resolution records of past climate. Because calcite in these speleothems can be dated with exceptional accuracy, these records are matching and in some cases exceeding records from lakes, trees, glaciers, and oceans in their importance, and are providing remarkable detail about regional and global climate change history. Multiple records are offered and discussed in this article and show the significance of caves to the field of paleoclimatology.


Results 1 to 8 of 8
You probably didn't submit anything to search for