Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That consumer is any living thing that is unable to manufacture food from nonliving substances, but depends instead on the energy stored in other living things [23]. see also carnivore; decomposers; food chain; herbivore; omnivore; producers.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for grasses (Keyword) returned 10 results for the whole karstbase:
LIMESTONE QUARRYING AND QUARRY RECLAMATION IN BRITAIN, 1993, Gunn J. , Bailey D. ,
Limestones have been worked for many thousands of years initially for building stone and agricultural lime and more recently for a wide range of construction and industrial uses. In most industrialized countries limestone quarries represent the most visually obvious and, in both process and landform terms, the most dramatic anthropogenic impact on karst terrain. However, quarrying has to date, received surprisingly little attention from karst scientists. Research in the English Peak District suggested that the postexcavation evolution of quarried limestone rock faces was in part a result of the methods used in their excavation, and this led to the development of a technique designed to reduce the visual and environmental impacts of modern quarries by ''Landform replication.'' This involves the use of controlled ''restoration blasting'' techniques on quarried rock slopes to construct a landform sequence similar to that in the surrounding natural landscape. The constructed landforms are then partially revegetated using appropriate wildflower, grass, and/or tree species

Agricultural chemicals at the outlet of a shallow carbonate aquifer, 1996, Felton Gk,
A groundwater catchment, located in Woodford and Jessamine Counties in the Inner Bluegrass of Kentucky, was instrumented to develop long-term flow and water quality data. The land uses on this 1 620-ha catchment consist of approximately 59% in grasses consisting of beef farms, horse farms, and a golf course; 16% row crops; 6% orchard; 13% forest; and 6% residential. Water samples were analyzed twice a week for, Ca, Mg, Na, Cl-, HCO3-, SO4=, NO3-, total solids, suspended solids, fecal coliforms, fecal streptococci, and triazines. Flow rate and average ambient temperature were also recorded. No strong linear relationship was developed between chemical concentrations and other parameters. The transient nature of the system was emphasized by one event that drastically deviated from others. Pesticide data were summarized and the ''flushing'' phenomena accredited to karst systems was discussed. The total solids content in the spring was consistent at approximately 2.06 mg/L. Fecal bacteria contamination was well above drinking water limits (fecal coliform and fecal streptococci averages were 1 700 and 4 300 colony-forming-units/100 mL, respectively) and the temporal variation in bacterial contamination was not linked to any other variable

Carbon stable isotopic composition of karst soil CO2 in central Guizhon, China, 1999, Zheng L. P. ,
The delta(13)C values of soil CO2 are less than that of atmosphere CO2 in the karst area. On the soil-air interface, the delta(13)C vlaues of soil CO2 decrease with the increase in soil depth; below the soil-air interface, the delta(13)C values of soil CO2 are invariable. The type of vegetation on the land surface has an influence on the delta(13)C values of soil CO2. Due to the activity of soil microbes, the delta(13)C values of soil CO2 are variable dth seasonal change in grass. Isotopic tracer indicates that atmosphere CO2 has a great deal of contribution to soil CO2 at the lower parts of soil profile

A 3000-year high-resolution stalagmitebased record of palaeoclimate for northeastern South Africa, 1999, Holmgren K. , Karlen W. , Lauritzen S. E. , Leethorp J. A. , Partridge T. C. , Piketh S. , Repinski P. , Stevenson C. , Svanered O. , Tyson P. D. ,
High-resolution stable isotope variations and growth structure analyses of the last three millennia of a 6600-year stalagmite record at Cold Air Cave, Makapansgat Valley, South Africa, are presented. Growth layers, which are measurable over the last 250 years, are shown to be annual. The correlation between the width of growth layers and precipitation is strongly positive. Changes in{delta}18O and{delta}13C are positively correlated and inversely correlated to changes in the colour of the growth layers in the stalagmite. Variations in colour are directly correlated with mean annual temperature. Dark colouration is the product of increased temperature and mobilization of organic matter from the soil, and is associated with wetter summers and enhanced growth of C4 grasses. Darker colouring and enriched{delta}18O and{delta}13C reflect a warmer, wetter environment, whereas lighter colouring and depleted isotopic values are indicative of cooler, drier conditions. The dominant episode in the 3000-year record is the cool, dry 500-year manifestation of the Little Ice Age', from ad 1300 to about 1800, with the lowest temperatures at around ad 1700. The four centuries from ad 900 to 1300, experiencing above-average warming and high variability, may be the regional expression of the medieval warming. Other cool, dry spells prevailed from around ad 800 to 900 and from about ad 440 to 520. The most prolonged warm, wet period occurred from ad 40 to 400. Some extreme events are shown to correspond well with similar events determined from the Greenland GISP2 ice-core record and elsewhere. Distinct periodicities occur within the record at around 120, 200-300, 500-600 and at about 800 years BP

Forest recovery in abandoned agricultural lands in a karst region of the Dominican Republic, 2000, Rivera L. W. , Zimmerman J. K. , Aide T. M. ,
This study documents the status of forest vegetation in the karst region of Los Haitises National Park, Dominican Republic, following the abandonment of pastures (less than or equal to 5 years), young (less than or equal to 5 years) 'conucos' (mixed plantings), old (7-30 years) conucos, and cacao plantations (> 25 years). We compared these sites to vegetation characteristics of patches of forest in karst valleys ('old forest'-too old to know their exact land use) and on mogote tops with no recent history of human disturbance. The youngest sites date to when squatters were removed from Los Haitises National Park. Forest structure (density, basal area, and species richness of woody plants greater than or equal to 1 cm DBH) were all significantly affected by land use. Density was highest in intermediate-aged valley sites (old conucos) and mogote tops, while both basal area and species richness tended to increase with age of abandonment. Although cacao plantations had been abandoned for more than 25 years the species diversity was low, due to continued regeneration of this persistent crop. Abandoned pastures had the greatest nonwoody biomass and were dominated by the fern Nephrolepis multiflora which had completely replaced pasture grasses. An ordination of the woody plant communities separated the mogote tops from valleys, emphasizing the strong control that topography has on the forest community in moist and wet tropical forests on karst substrates. Valley sites were arranged in the ordination in order of their age, suggesting a successional sequence converging on the composition of the 'old forest' sites

Application of carbon isotope for discriminating sources of soil CO2 in karst area, Guizhou, 2001, Li T. Y. , Wang S. J. ,
Using carbon isotope of soil CO2 this paper discussed the sources of soil CO2 in karst area, Guizhou Province, China. Oxidation-decomposition of organic matter, respiration of plant root and activity of microbe are thought to be the major sources of soil CO2. However, in karst area, the contribution of dissolution of underlying carbonate rock to soil CO2 should be considered as in acidic environment. Atmospheric CO2 is the major composition Of Soil CO2 in surface layer of soil profiles and its proportion in Soil CO2 decreases with increase of soil depth. CO2 produced by dissolution of carbonate rock contributes 34%-46% to soil CO2 below the depth of 10cm in the studied soil profiles covered by grass

A mineralogical and phytolith study of the middle stone age hearths in Sibudu Cave, KwaZulu-Natal, South Africa, 2004, Schiegl S. , Stockhammer P. , Scott C. , Wadley L. ,
Sediments from Middle Stone Age hearths and burnt deposits in Sibudu Cave (KwaZulu-Natal, South Africa) were analysed for their mineral and phytolith contents. The mineral compositions were determined by FT-IR spectroscopy. The phytoliths were classified and counted by transmitted polarized light microscopy. Burning experiments using wood and grasses from species native to the cave's environment yielded the reference ashes. The visible hearths and ash dumps contain phytolith assemblages characteristic of wood fuel. A significant portion of the phytoliths of hearths and ash layers display morphologies related to intense heating. This finding is suggestive of long-burning wood fires and/or reuse of the same fireplace. The heat-altered phytoliths are useful in tracing fires, especially if hearth structures are not preserved and ash deposits have been diagenetically and heavily altered. The phytolith contents and mineralogical composition of the ash deposits and the surrounding sedimentary matrix are very similar. This feature suggests that the sedimentary matrix originally contained fireplaces and ash deposits, whose structures were destroyed shortly after deposition, presumably by trampling.(21) The intact circular hearths are most likely the product of intense fires. Similar results from hearths and their surrounding matrix have been reported from Middle Palaeolithic cave sites in Israel

Hierarchical analysis of switchgrass morphology, 2005, Boe A, Casler Md,
Switchgrass (Panicum virgatum L.) has potential as a biomass crop in North America. Our objective was to determine effects of cultivar and location on morphological traits that influence biomass in switchgrass. Six cultivars with origins from 37 degrees N, 88 degrees W (Cave-In-Rock and Shawnee) to 46 degrees N, 100 degrees W (Dacotah) were evaluated in 1-yr-old swards at Bristol and South Shore, SD; in 3-yr-old swards at Brookings, SD, and Arlington, WI; and in 15-yr-old swards at Pierre, SD, for biomass; tillers m(-2); reproductive tiller proportions by count and weight, weight tiller(-1); phytomers tiller(-1); leaf, stem, and inflorescence components of tiller weight; and sheath and stem components of phytomer weight. Biomass production was related to region of cultivar origin [e.g., Shawnee produced two times more than Dacotah (6.2 Mg ha(-1))]. Tiller density was highest for Dacotah (1090 tillers m(-2)) and lowest for Cave-In-Rock (520 tillers m(-2)). Reproductive tiller fractions by count were plastic and higher at Arlington (0.81) than Brookings (0.08). Weights per reproductive tiller ranged from 0.7 g (Dacotah) to 3.4 g (Cave-In-Rock). Phytomers per tiller was not plastic (5.2 for Dacotah to 7.4 for Cave-In-Rock). Internode weight exhibited a basipetal increase and was highly plastic. Cultivars responded similarly to location effects on tillers m(-2), weight tiller', and biomass production. Cultivar differences for biomass production were attributed to variation at tiller (phytomers tiller(-1)) and phytomer (weight phytomer(-1)) levels

New insights into the carbon isotope composition of speleothem calcite: An assessment from surface to subsurface, 2012, Meyer, Kyle William

The purpose of this study was to provide new insights into the interpretation of speleothem (cave calcite deposit) δ13C values. We studied two caves in central Texas, which have been actively monitored for over 12 years. We compared δ13C values of soil CO2 (δ13Cs), cave drip water (δ13CDIC), and modern cave calcite (δ13Ccc). Measured average δ13C values of soil CO2 were -13.9 ± 1.4‰ under mixed, shallowly-rooted C3-C4 grasses and were -18.3 ± 0.7‰ under deeply-rooted ashe juniper trees (C3). The δ13CDIC value of minimally-degassed drip water in Natural Bridge Caverns was -10.7 ± 0.3‰. The carbon isotope composition of CO2 in equilibrium with this measured drip water is -18.1 ± 0.3‰. The agreement between juniper soil CO2 and drip water (within ~0.2‰) suggests that the δ13C value of drip water (δ13CDIC) that initially enters the cave is controlled by deeply-rooted plants and may be minimally influenced by host-rock dissolution and/or prior calcite precipitation (PCP). At Inner Space Caverns, δ13CDIC values varied with vegetation above the drip site, distance from the cave entrance, and distance along in-cave flow paths. Whereas CO2 derived from deeply-rooted plants defines the baseline for drip water δ13CDIC entering the caves, kinetic effects associated with the degassing of CO2 and simultaneous precipitation of calcite account for seasonal variability in δ13CDIC and δ13Ccc. We documented increases in δ13CDIC at a rate of up to 0.47‰/hour during the season of peak degassing (winter), suggesting that δ13CDIC variations may be controlled by total elapsed time of CO2 degassing from drip water (Ttotal). We also observed seasonal shifts in the δ13C values of modern calcite grown on glass substrates that are correlated with shifts in drip water δ13CDIC values and drip-rate. Therefore, we suggest that increased aridity at the surface above a given cave results in, slower drip-rates, higher Ttotal, and therefore higher δ13CDIC values. We propose that large variability (>2‰) in speleothem δ13Ccc values dominantly reflect major vegetation changes, and/or increasing Ttotal by slowing drip-rates. Based on these findings, variability in speleothem carbon isotope records may serve as a proxy for paleoaridity and/or paleovegetation change.


New insights into the carbon isotope composition of speleothem calcite : an assessment from surface to subsurface, 2012, Meyer, Kyle William

The purpose of this study was to provide new insights into the interpretation of speleothem (cave calcite deposit) δ13C values. We studied two caves in central Texas, which have been actively monitored for over 12 years. We compared δ13C values of soil CO2 (δ13Cs), cave drip water (δ13CDIC), and modern cave calcite (δ13Ccc). Measured average δ13C values of soil CO2 were -13.9 ± 1.4‰ under mixed, shallowly-rooted C3-C4 grasses and were -18.3 ± 0.7‰ under deeply-rooted ashe juniper trees (C3). The δ13CDIC value of minimally-degassed drip water in Natural Bridge Caverns was -10.7 ± 0.3‰. The carbon isotope composition of CO2 in equilibrium with this measured drip water is -18.1 ± 0.3‰. The agreement between juniper soil CO2 and drip water (within ~0.2‰) suggests that the δ13C value of drip water (δ13CDIC) that initially enters the cave is controlled by deeply-rooted plants and may be minimally influenced by host-rock dissolution and/or prior calcite precipitation (PCP). At Inner Space Caverns, δ13CDIC values varied with vegetation above the drip site, distance from the cave entrance, and distance along in-cave flow paths. Whereas CO2 derived from deeply-rooted plants defines the baseline for drip water δ13CDIC entering the caves, kinetic effects associated with the degassing of CO2 and simultaneous precipitation of calcite account for seasonal variability in δ13CDIC and δ13Ccc. We documented increases in δ13CDIC at a rate of up to 0.47‰/hour during the season of peak degassing (winter), suggesting that δ13CDIC variations may be controlled by total elapsed time of CO2 degassing from drip water (Ttotal). We also observed seasonal shifts in the δ13C values of modern calcite grown on glass substrates that are correlated with shifts in drip water δ13CDIC values and drip-rate. Therefore, we suggest that increased aridity at the surface above a given cave results in, slower drip-rates, higher Ttotal, and therefore higher δ13CDIC values. We propose that large variability (>2‰) in speleothem δ13Ccc values dominantly reflect major vegetation changes, and/or increasing Ttotal by slowing drip-rates. Based on these findings, variability in speleothem carbon isotope records may serve as a proxy for paleoaridity and/or paleovegetation change.


Results 1 to 10 of 10
You probably didn't submit anything to search for