Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That cave flower is an elongate curved deposit of gypsum or epsomite on a cave wall in which growth occurs at the attached end [10]. synonyms: gypsum flower; oulopholite. see also anthodite; cave cotton.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for groundwater quality (Keyword) returned 18 results for the whole karstbase:
Showing 1 to 15 of 18
DIVERSITY - A NEW METHOD FOR EVALUATING SENSITIVITY OF GROUNDWATER TO CONTAMINATION, 1993, Ray J. A. , Odell P. W. ,
This study outlines an improved method, DIVERSITY, for delineating and rating groundwater sensitivity. It is an acronym for Dlspersion/VElocity-Rated SensitivITY, which is based on an assessment of three aquifer characteristics: recharge potential, flow velocity, and flow directions. The primary objective of this method is to produce sensitivity maps at the county or state scale that illustrate intrinsic potential for contamination of the uppermost aquifer. Such maps can be used for recognition of aquifer sensitivity and for protection of groundwater quality. We suggest that overriding factors that strongly affect one or more of the three basic aquifer characteristics may systematically elevate or lower the sensitivity rating. The basic method employs a three-step procedure: (1) Hydrogeologic settings are delineated on the basis of geology and groundwater recharge/discharge position within a terrane. (2) A sensitivity envelope or model for each setting is outlined on a three-component rating graph. (3) Sensitivity ratings derived from the envelope are extrapolated to hydrogeologic setting polygons utilizing overriding and key factors, when appropriate. The three-component sensitivity rating graph employs two logarithmic scales and a relative area scale on which measured and estimated values may be plotted. The flow velocity scale ranging from 0.01 to more than 10,000 m/d is the keystone of the rating graph. Whenever possible, actual time-of-travel values are plotted on the velocity scale to bracket the position of a sensitivity envelope. The DIVERSITY method was developed and tested for statewide use in Kentucky, but we believe it is also practical and applicable for use in almost any other area

INFLUENCE OF KARST HYDROLOGY ON WATER-QUALITY MANAGEMENT IN SOUTHEAST SOUTH-AUSTRALIA, 1994, Emmett Aj, Telfer Al,
Southeast South Australia has large reserves of potable groundwater, generally close to the surface. European settlement has had a major impact on groundwater quality due to the presence of extensive karst in the unconfined aquifer. Historically, industries such as cheese factories were often sited close to karst features (e.g. caves and sinkholes) because they provided a convenient means of waste disposal. Although most have long since closed, they have left a legacy of pollution plumes of varying sizes. In Mount Gambier, the main regional centre, the presence of both exposed and subterranean karst features provided a ''perfect system'' for the disposal of stormwater. Prior to the provision of a sewerage system within Mount Gambier, all toilet and household wastewaters were disposed to ground. These activities and the subsequent problems that began emerging in the 1960s have led to a concerted effort over the last 20 years to change the philosophy of waste disposal and to generate an understanding and responsibility by those who live in the region and depend on groundwater for the major part of their water supply. Mount Gambier's water supply comes from the Blue Lake. Groundwater inflow from a highly karstic Tertiary limestone aquifer provides 90% of the recharge to the Blue Lake. The lake is a high-value resource in a high-risk environment and in order to minimize this risk, a water-quality management plan for the lake is currently being developed

Gypsum karst of the Baltic republics., 1996, Narbutas Vytautas, Paukstys Bernardas
The Baltic Republics of Estonia, Latvia and Lithuania have karst areas developed in both carbonate and gypsiferous rocks. In the north, within the Republic of Estonia, Ordovician and Silurian limestones and dolomites crop out, or are covered by glacial Quaternary sediments. To the south, in Latvia and Lithuania, gypsum karst is actively developing in evaporites of Late Devonian (Frasnian) age. Although gypsum and mixed sulphate-carbonate karst only occupy small areas in the Baltic countries, they have important engineering and geo-ecological consequences. Due to the rapid dissolution of gypsum, the evolution of gypsum karst causes not only geological hazards such as subsidence, but it also has a highly adverse effect on groundwater quality. The karst territory of the Baltic states lies along the western side of the area, called the Great Devonian Field that form part of the Russian Plain. Within southern Latvia and northern Lithuania there is an area, exceeding 1000 sq. km, where mature gypsum karst occurs at the land surface and in the subsurface. This karst area is referred to here as the Gypsum Karst Region of the Baltic States. Here the surface karst forms include sinkholes, karst shafts, land subsidence, lakes and dolines. In Lithuania the maximum density of sinkholes is 200 per sq. km; in Latvia they reach 138 units per sq. km. Caves, enlarged dissolution voids and cavities are uncommon in both areas.

Study on the contamination of fracture-karst water in Boshan District, China, 1997, Zhu X. Y. , Xu S. H. , Zhu J. J. , Zhou N. Q. , Wu C. Y. ,
Boshan is an industrial city in the center of Shandong Province where ground water is the only source for the urban water supply. The major water resource is fracture-karst water in the middle Ordovician carbonate rocks. Based on the hydrogeological investigation and mapping in this area we studied the geologic and hydrogeologic settings, the major pollution sources and the pathways of contamination, the principal contaminants, and their spatial distribution in ground water. The ground-water quality has also been estimated by the fuzzy mathematic method. The geostatistical method, such as the kriging method, was taken to simulate spatial distribution of the contaminants. The grey system method was adopted to forecast future contamination. An attempt at the remediation of Cr6 contamination in fracture-karst water was also discussed. Finally, some proposals for the protection of the ground-water environment in Boshan District are offered

The hydrogeological effect of quarrying karstified limestone: options for prediction and mitigation, 1998, Hobbs S. L. , Gunn J. ,
The hydrogeological effect of limestone extraction from open pits (quarries) depends on the location of the site in the landscape, the vertical and horizontal extent of the excavation, the methods used to excavate the stone, and the extent of karstification. Groundwater quality is commonly affected by quarrying through increased fine sediment concentrations and accidental spillages. Removal of any soil cover allows direct access for pollutants into the aquifer, a problem which may be exacerbated by licensed or illegal tipping of waste following cessation of stone extraction. Quarrying also removes the entire subcutaneous (epikarstic) zone which is an important ground-water store, together with part or all of the unsaturated zone. Pumping of water from the excavation will change the ground-water balance and can alter the direction and amounts of conduit flow, particularly if the quarry extends beneath the water table. Prediction of such impacts is difficult, especially when the limestone is karstified, such that there will always be a degree of uncertainty associated with the impact of the workings. Hence, it is essential that for new quarries monitoring is undertaken prior to, throughout, and following mineral working, with options for mitigation if mineral working causes an unacceptable impact. When a quarry ceases to be worked, the direct impacts on groundwater quality may rapidly decrease but there are important implications for after-use of the site. Impacts on groundwater quantity are likely to be more long-term

Regional groundwater flow model construction and wellfield site selection in a karst area, Lake City, Florida, 1999, Dufresne Dp, Drake Cw,
The city of Lake City is in the process of expanding their water supply facilities by 45 420 m(3) day(-1) (12 MGD) to meet future demands. One portion of wellfield site selection addressed here includes analysis of ambient groundwater quality and its potential for contamination. This study also addresses the potential impacts of groundwater withdrawals to existing legal users, wetlands, surface waters and spring flows. A regional groundwater flow model (MODFLOW) was constructed using existing hydrogeologic data from state and federal agencies in order to simulate the existing hydrologic conditions of this karst area and to predict withdrawal impacts. The model was calibrated by matching potentiometric surface maps and spring flows to within reasonable ranges. Drawdowns in the Floridan and surficial aquifers predicted by the model show minimal impacts to existing legal users and only a 5% reduction in the flow at Ichetucknee Springs ca 21 km (13 miles) away. Due to the karstic nature of the Floridan aquifer here, the equivalent-porous-medium flow model constructed would not be appropriate for contaminant transport modeling. The groundwater flow model is, however, appropriate to represent hydraulic heads and recharge/discharge relationships on a regional scale. (C) 1999 Elsevier Science B.V. All rights reserved

Groundwater protection in a Celtic region: the Irish example, 2000, Misstear Bruce D. , Daly Donal,
One of the key environmental objectives of the proposed EU Water Framework Directive is that Member States must prevent the deterioration of groundwater quality. A national groundwater protection scheme for Ireland has been published recently. This scheme shows certain broad similarities to the groundwater protection policy for England and Wales, incorporating the concepts of groundwater vulnerability, source protection zones and responses to potentially polluting activities. However, the Irish scheme is different in several important respects, reflecting the different hydrogeological conditions and pollution concerns in Ireland. Some of these hydrogeological conditions and pollution concerns are common to the other Celtic regions. A major feature of the Irish scheme is the importance given to subsoil permeability in defining groundwater vulnerability. At present, the subsoil permeability is classified in qualitative terms as high, moderate or low. For the protection scheme to be defensible, it is essential to adopt a systematic and consistent approach for assigning subsoil units to these permeability categories. In mapping groundwater vulnerability, it is also useful to take account of secondary indicators such as groundwater recharge potential, natural and artificial drainage density and vegetation characteristics. Another important issue in Ireland is the protection of groundwater in karst areas, since these areas are especially vulnerable to contamination

Groundwater in the Celtic regions, 2000, Robins N. S. , Misstear B. D. R. ,
The Celtic regions of Britain and Ireland have a complex and diverse geology which supports a range of regionally and locally important bedrock aquifers and unconsolidated Quaternary aquifers. In bedrock, aquifer units are often small and groundwater flow paths short and largely reliant on fracture flow. Groundwater has fulfilled an important social role throughout history, and is now enjoying renewed interest. Groundwater quality is generally favourable and suitable for drinking with minimal treatment. However, many wells are vulnerable to microbiological and chemical pollutants from point sources such as farmyards and septic tank systems, and nitrate concentrations from diffuse agricultural sources are causing concern in certain areas. Contamination by rising minewaters in abandoned coalfields and in the vicinity of abandoned metal mines is also a problem in some of the Celtic lands

Water and Land-Use Problems in Areas of Conduit Aquifers, 2000, Aley T.
Water and land-use problems occur in areas of conduit aquifers because of the intimate interactions which exist between the surface and the subsurface. Water is the agent which most directly links the surface and subsurface. Karst areas have unique natural resource problems which have major economic consequences. Soils are often of poor agricultural quality. Surface water supplies are limited. Groundwater supplies are often limited, expensive to exploit, and highly subject to contamination because of ineffective natural cleansing processes. The quality of water in a karst spring or well is largely determined by land-use conditions in the recharge area which contributes the water to that well or spring. The range of land-use activities which can adversely impact groundwater quality in karst aquifers is extensive. Municipal and on-site sewage systems, petroleum storage and distribution facilities, and highways and pipelines have all created wide-spread problems. Sinkhole collapses have occurred beneath sewage lagoons, highways, and other features. Recommended resource protection strategies for karst areas are identified. Preventing problems is crucial. Recharge area delineation provides fundamental and essential data, and should be accompanied by hazard area mapping. Land use in karst areas must be tailored to site conditions.

Results from the Big Spring basin water quality monitoring and demonstration projects, Iowa, USA, 2001, Rowden R. D. , Liu H. B. , Libra R. D. ,
Agricultural practices, hydrology, and water quality of the 267-km(2) Big Spring groundwater drainage basin in Clayton County, Iowa, have been monitored since 1981. Land use is agricultural; nitrate-nitrogen (-N) and herbicides are the resulting contaminants in groundwater and surface water. Ordovician Galena Group carbonate rocks comprise the main aquifer in the basin. Recharge to this karstic aquifer is by infiltration, augmented by sinkhole-captured runoff. Groundwater is discharged at Big Spring, where quantity and quality of the discharge are monitored. Monitoring has shown a threefold increase in groundwater nitrate-N concentrations from the 1960s to the early 1980s. The nitrate-N discharged from the basin typically is equivalent to over one-third of the nitrogen fertilizer applied, with larger losses during wetter years. Atrazine is present in groundwater all year; however, contaminant concentrations in the groundwater respond directly to recharge events, and unique chemical signatures of infiltration versus runoff recharge are detectable in the discharge from Big Spring. Education and demonstration efforts have reduced nitrogen fertilizer application rates by one-third since 1981. Relating declines in nitrate and pesticide concentrations to inputs of nitrogen fertilizer and pesticides at Big Spring is problematic. Annual recharge has varied five-fold during monitoring, overshadowing any water-quality improvements resulting from incrementally decreased inputs

Karst groundwater basin delineation, Fort Knox, Kentucky, 2002, Connair Dp, Murray Bs,
Evaluation of karst groundwater quality concern at Fort Knox Kentucky has required the development of a sitewide karst groundwater flow model and basin delineation investigation. The karst aquifer underlying Fort Knox is developed within approximately 60 m of the St. Louis Limestone and is bounded on three sides by surface streams that represent the local base level. The underlying Salem Limestone acts as a regional aquitard and provides a lower limit to karst aquifer development. The study area covers over 130 km(2) and contains over 200-inventoried karst features. As a part of this investigation, innovative multiple dye trace events were conducted throughout the study area using up to six dyes per event with a total of eight dyes used to conduct 14 dye traces during three seasonal events. Dye trace results, structural and topographic controls, spring characteristics, and normalized base flow were used to establish groundwater basin limits and boundary zones and to develop a conceptual sitewide groundwater flow model. The primary finding of this work indicates sitewide groundwater flow is controlled directly or indirectly by local stratigraphy, geologic structure, and changes in stream levels in the geologic past, and that two groundwater basins dominate the study area, accounting for approximately 80% of measured sitewide groundwater discharge. The findings of this investigation will be used to assess the groundwater contaminant contribution from source areas in individual basins, develop an effective groundwater monitoring program, and guide future groundwater management strategies. (C) 2002 Published by Elsevier Science B.V

Changes in groundwater quality in a conduit-flow-dominated karst aquifer, following BMP implementation, 2002, Currens J,

The environmental impacts of human activities and engineering constructions in karst regions, 2002, Milanovic P. ,
With increasing demands on water resources in karst regions, an important issue is how to keep the balance between the necessity for development and preservation of complex and unpredictable hydrogeological systems. Karst terrains have been modified and adapted through a range of human activities as needs for drinking water, hydroelectric power and other resources increase. In many regions, reclamation projects, construction of large dams and reservoirs, deep underground excavations and complex foundation structures have had a detrimental impact on the environment. However, because each karst region is unique, the nature of environmental change is unpredictable, often occurs very rapidly, and similar situations are seldom, if ever, repeated. Changes in karst function can have a profound impact on regional ecological, infrastructure, social and political systems. The majority of impacts can be foreseen and mitigated by appropriate designs. Ecological and environmental protection is more difficult when the changes are unexpected and source of problem is some distance from the impacted area. Optimal environmental protection requires a multidisciplinary approach, a lot of patience and perseverance, and adequate funds. Legal aspects and insurability are also very important basic elements in karst environmental protection. Criteria for determining the environmental protection, as well as regulatory procedures that are applicable for nonkarst regions are generally not suitable for karst terrain. Successful solutions require serious and complex geological/hydrogeological investigation programs and close co-operation of a wide spectrum of scientists and engineers: geologists, civil engineers, biologists, chemists, hydrogeologists, geophysicists, sociologists and many others. In karst areas where interrelations and interactions are inadequately known, the ultimate aim is identification of crucial parameters that define causes and consequences between human activities and the resulting impact (cause-and-effect relations). As a consequence of human activities and engineering construction in karst regions, the common negative environmental impacts are: severe spring discharge change, groundwater quality deterioration, endemic fauna endangering, waste disposal failures, induced seismicity, induced sinkholes, and a number of different secondary uncertainties. In some cases, socio-economic problems related to migration from submerged regions are very pronounced. Similar problems are related with flooding of cultural and historical monuments and natural rarities. The major aims of proper planning of water resource systems in karst terrain are to minimize negative and to maximize positive environmental impacts. The optimal strategy of water resources development in karst areas is a key requirement for regional socio-economic development

Isotopic and geochemical evolution of ground and surface waters in a karst dominated geological setting: A case study from Belize, Central America, 2004, Marfia A. M. , Krishnamurthy R. V. , Atekwana E. A. , Panton W. F. ,
Analysis of stable isotopes and major ions in groundwater and surface waters in Belize, Central America was carried out to identify processes that may affect drinking water quality. Belize has a subtropical rainforest/savannah climate with a varied landscape composed predominantly of carbonate rocks and clastic sediments. Stable oxygen (delta(18)O) and hydrogen (deltaD) isotope ratios for surface and groundwater have a similar range and show high d-excess (10-40.8parts per thousand). The high d-excess in water samples suggest secondary continental vapor flux mixing with incoming vapor from the Caribbean Sea. Model calculations indicate that moisture derived from continental evaporation contributes 13% to overhead vapor load. In surface and groundwater, concentrations of dissolved inorganic carbon (DIC) ranged from 5.4 to 112.9 mg C/l and delta(13)C(DIC) ranged from -7.4 to -17.4parts per thousand. SO42, Ca2 and Mg2 in the water samples ranged from 2-163, 2-6593 and 2-90 mg/l, respectively. The DIC and delta(13)C(DIC) indicate both open and closed system carbonate evolution. Combined delta(13)C(DIC) and Ca2, Mg2 SO42- suggest additional groundwater evolution by gypsum dissolution and calcite precipitation. The high SO42- content of some water samples indicates regional geologic control on water quality. Similarity in the range of delta(18)O, deltaD and delta(13)C(DIC) for surface waters and groundwater used for drinking water supply is probably due to high hydraulic conductivities of the karstic aquifers. The results of this study indicate rapid recharge of groundwater aquifers, groundwater influence on surface water chemistry and the potential of surface water to impact groundwater quality and vise versa. (C) 2003 Elsevier Ltd. All rights reserved

Groundwater contamination in caves: four case studies in Spain, 2008, Jimnezsnchez M. , Stoll H. , Vadillo I. , Lpezchicano M. , Domnguezcuesta M. , Martnrosales W. And Melndezasensio M.
Groundwater quality was monitored in four Spanish caves using concentrations of nitrate, potassium, phosphorus and in some cases total organic carbon. Three of the caves are located in NW Spain and contain prehistoric cave paintings and hence have special conservation interest. Of these, two are open show caves (Tito Bustillo and Pindal Caves), while the other one (Herreras Cave) is not managed for tours and is partially closed off to public access. The fourth cave (Las Maravillas Cave) is located in SW Spain and is opened to the public because of its geological features and natural beauty. In this paper, we compare two sampling methodologies used in the four caves. In Pindal and Herrerias Cave high temporal resolution is achieved with a dripwater collector that collects discrete samples every 48 hours. In Tito Bustillo and Las Maravillas Caves a higher spatial resolution is achieved (16 sampling points in each one), but with a frequency of sampling ranging from 15 days to 6 months. Wastewater and livestock waste appear to be the principal sources of contamination to cave waters. Caves with concentrated livestock (stables) or urban and residential wastewater systems directly situated above the cave exhibit the highest level of contamination detected in elevated concentrations of nitrogen species and in some cases depressed oxygen availability in waters

Results 1 to 15 of 18
You probably didn't submit anything to search for