Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That dispersion, transverse is spreading of the solute in directions perpendicular to the bulk flow [22].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
Engineering challenges in Karst, Stevanović, Zoran; Milanović, Petar
See all featured articles
Featured articles from other Geoscience Journals
Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy), Dimuccio, L.A.; Rodrigues, N.; Larocca, F.; Pratas, J.; Amado, A.M.; Batista de Carvalho, L.A.
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
See all featured articles from other geoscience journals

Search in KarstBase

Your search for gulf-of-mexico (Keyword) returned 7 results for the whole karstbase:
Hydrogeologic and geochemical factors required for the development of Carolina Bays along the Atlantic and Gulf of Mexico Coastal Plain, USA, 1999, May J. H. , Warne A. G. ,
More than 60 years of intense study and debate have yet to resolve the origin of the Carolina Bays. Carolina Bays are circular to elliptical depressions located along the Gulf of Mexico and Atlantic Coastal Plains; Proposed processes of initiation and development of these karst-like features include meteorite impacts, substrate dissolution, wind, ice, marine waves and currents. Based on field studies throughout the Atlantic and Gulf Coastal Plains and on review of coastal plain literature, we propose that Carolina Bays initially developed as silica-karst features. During Pleistocene sea-level lowstands, water tables in the Atlantic Coastal Plain were up to 30 m lower than today. Large volumes of surface water collected in local topographic lows and/or areas of enhanced permeability and infiltrated through sandy substrates of the low-relief coastal plain, Localized infiltration of phreatic water induced extensive desilicification of the sandy and clayey substrates, resulting in volume loss and development of karst-like depressions. Particularly relevant to initial bay development was alteration of kaolinite to gibbsite, which can produce a 34-percent loss in clay material volume, and concurrent dissolution of iron oxide. The initial silica-karst depressions along the Atlantic and Gulf coasts were later modified by eolian and, perhaps, ice-push processes, which enhanced their elliptical form. The subsequent Holocene rise in sea level caused ground-water levels in the coastal plain to equilibrate near the present-day land surface. This curtailed geochemical weathering, as well as eolian and ice-related processes. Ground-water saturation partially reversed chemical reactions associated with intensive weathering of clays beneath the bays, masking evidence of the severe leaching that occurred during their initial formation. Silica-karst features, similar to Carolina Bays in their initial stages of development, are common geologic features, Moreover, silica-karst processes are active today in warm temperate, subtropical, and tropical areas in sandy substrates where groundwater levels are well below the ground surface and can cause subsidence or disrupt developing wetlands

Hydrogeologic and geochemical factors required for the development of Carolina Bays along the Atlantic and Gulf of Mexico, coastal plain, USA, 1999, May James H. , Warne Andrew G. ,
More than 60 years of intense study and debate have yet to resolve the origin of the Carolina Bays. Carolina Bays are circular to elliptical depressions located along the Gulf of Mexico and Atlantic Coastal Plains. Proposed processes of initiation and development of these karst-like features include meteorite impacts, substrate dissolution, wind, ice, marine waves and currents. Based on field studies throughout the Atlantic and Gulf Coastal Plains and on review of coastal plain literature, we propose that Carolina Bays initially developed as silica-karst features. During Pleistocene sea-level lowstands, water tables in the Atlantic Coastal Plain were up to 30 m lower than today. Large volumes of surface water collected in local topographic lows and/or areas of enhanced permeability and infiltrated through sandy substrates of the low-relief coastal plain. Localized infiltration of phreatic water induced extensive desilicification of the sandy and clayey substrates, resulting in volume loss and development of karst-like depressions. Particularly relevant to initial bay development was alteration of kaolinite to gibbsite, which can produce a 34-percent loss in clay material volume, and concurrent dissolution of iron oxide. The initial silica-karst depressions along the Atlantic and Gulf coasts were later modified by eolian and, perhaps, ice-push processes, which enhanced their elliptical form. The subsequent Holocene rise in sea level caused ground-water levels in the coastal plain to equilibrate near the present-day land surface. This curtailed geochemical weathering, as well as eolian and ice-related processes. Ground-water saturation partially reversed chemical reactions associated with intensive weathering of clays beneath the bays, masking evidence of the severe leaching that occurred during their initial formation. Silica-karst features, similar to Carolina Bays in their initial stages of development, are common geologic features. Moreover, silica-karst processes are active today in warm temperate, subtropical, and tropical areas in sandy substrates where ground-water levels are well below the ground surface and can cause subsidence or disrupt developing wetlands

Speleothem evidence for Holocene fluctuations of the prairie-forest ecotone, north-central USA, 1999, Denniston Rf, Gonzalez La, Baker Rg, Asmerom Y, Reagan Mk, Edwards Rl, Alexander Ec,
Carbon and oxygen isotopic trends from seven Midwestern speleothems record significant offsets in the timing of middle-Holocene vegetation change. Interactions of dry Pacific and moist Gulf of Mexico air masses maintained a sharp moisture gradient across Iowa, Minnesota, and Wisconsin such that the arrival of prairie was offset by 2000 years between caves and pollen sites located only 50 km apart. Oxygen isotopes shift concomitantly with carbon in most cases, although these changes are believed to represent increased evaporative enrichment of 18O prior to infiltration during the prairie period

The sequence stratigraphy, sedimentology, and economic importance of evaporite-carbonate transitions: a review, 2001, Sarg J. F. ,
World-class hydrocarbon accumulations occur in many ancient evaporite-related basins. Seals and traps of such accumulations are, in many cases, controlled by the stratigraphic distribution of carbonate-evaporite facies transitions. Evaporites may occur in each of the systems tracts within depositional sequences. Thick evaporite successions are best developed during sea level lowstands due to evaporative drawdown. Type 1 lowstand evaporite systems are characterized by thick wedges that fill basin centers, and onlap basin margins. Very thick successions (i.e. saline giants) represent 2nd-order supersequence set (20-50 m.y.) lowstand systems that cap basin fills, and provide the ultimate top seals for the hydrocarbons contained within such basins.Where slope carbonate buildups occur, lowstand evaporites that onlap and overlap these buildups show a lateral facies mosaic directly related to the paleo-relief of the buildups. This facies mosaic, as exemplified in the Silurian of the Michigan basin, ranges from nodular mosaic anhydrite of supratidal sabkha origin deposited over the crests of the buildups, to downslope subaqueous facies of bedded massive/mosaic anhydrite and allochthonous dolomite-anhydrite breccias. Facies transitions near the updip onlap edges of evaporite wedges can provide lateral seals to hydrocarbons. Porous dolomites at the updip edges of lowstand evaporites will trap hydrocarbons where they onlap nonporous platform slope deposits. The Desert Creek Member of the Paradox Formation illustrates this transition. On the margins of the giant Aneth oil field in southeastern Utah, separate downdip oil pools have accumulated where dolomudstones and dolowackestones with microcrystalline porosity onlap the underlying highstand platform slope.Where lowstand carbonate units exist in arid basins, the updip facies change from carbonates to evaporite-rich facies can also provide traps for hydrocarbons. The change from porous dolomites composed of high-energy, shallow water grainstones and packstones to nonporous evaporitic lagoonal dolomite and sabkha anhydrite occurs in the Upper Permian San Andres/Grayburg sequences of the Permian basin. This facies change provides the trap for secondary oil pools on the basinward flanks of fields that are productive from highstand facies identical to the lowstand dolograinstones. Type 2 lowstand systems, like the Smackover Limestone of the Gulf of Mexico, show a similar relationship. Commonly, these evaporite systems are a facies mosaic of salina and sabkha evaporites admixed with wadi siliciclastics. They overlie and seal highstand carbonate platforms containing reservoir facies of shoalwater nonskeletal and skeletal grainstones. Further basinward these evaporites change facies into similar porous platform facies, and contain separate hydrocarbon traps.Transgressions in arid settings over underfilled platforms (e.g. Zechstein (Permian) of Europe; Ferry Lake Anhydrite (Cretaceous), Gulf of Mexico) can result in deposition of alternating cyclic carbonates and evaporites in broad, shallow subaqueous hypersaline environments. Evaporites include bedded and palmate gypsum layers. Mudstones and wackestones are deposited in mesosaline, shallow subtidal to low intertidal environments during periodic flooding of the platform interior.Highstand systems tracts are characterized by thick successions of m-scale, brining upward parasequences in platform interior settings. The Seven Rivers Formation (Guadalupian) of the Permian basin typifies this transition. An intertonguing of carbonate and sulfates is interpreted to occur in a broad, shallow subaqueous hypersaline shelf lagoon behind the main restricting shelf-edge carbonate complex. Underlying paleodepositional highs appear to control the position of the initial facies transition. Periodic flooding of the shelf interior results in widespread carbonate deposition comprised of mesosaline, skeletal-poor peloid dolowackestones/mudstones. Progressive restriction due to active carbonate deposition and/or an environment of net evaporation causes brining upward and deposition of lagoonal gypsum. Condensed sections of organic-rich black lime mudstones occur in basinal areas seaward of the transgressive and highstand carbonate platforms and have sourced significant quantities of hydrocarbons

Groundwater-flow modeling in the Yucatan karstic aquifer, Mexico, 2002, Gonzalezherrera R. , Pinto I. , Gamboavargas J. ,
The current conceptual model of the unconfined karstic aquifer in the Yucatan Peninsula, Mexico, is that a fresh-water lens floats above denser saline water that penetrates more than 40 km inland. The transmissivity of the aquifer is very high so the hydraulic gradient is very low, ranging from 7-10 mm/km through most of the northern part of the peninsula. The computer modeling program AQUIFER was used to investigate the regional groundwater flow in the aquifer. The karstified zone was modeled using the assumption that it acts hydraulically similar to a granular, porous medium. As part of the calibration, the following hypotheses were tested: (1) karstic features play an important role in the groundwater-flow system; (2) a ring or belt of sinkholes in the area is a manifestation of a zone of high transmissivity that facilitates the channeling of groundwater toward the Gulf of Mexico; and (3) the geologic features in the southern part of Yucatan influence the groundwater-flow system. The model shows that the Sierrita de Ticul fault, in the southwestern part of the study area, acts as a flow barrier and head values decline toward the northeast. The modeling also shows that the regional flow-system dynamics have not been altered despite the large number of pumping wells because the volume of water pumped is small compared with the volume of recharge, and the well-developed karst system of the region has a very high hydraulic conductivity

Regional Quaternary submarine geomorphology in the Florida Keys, 2003, Lidz Barbara H. , Reich Christopher D. , Shinn Eugene A. ,
High-quality seismic reflection profiles fill a major gap in geophysical data along the south Florida shelf, allowing updated interpretations of the history of the Quaternary coral reef system. Incorporation of the new and existing data sets provides the basis for detailed color maps of the Pleistocene surface and thickness of overlying Holocene accretions. The maps cover the Florida Keys to a margin-wide upper-slope terrace (30 to 40 m deep) and extend from The Elbow Reef (north Key Largo) to Rebecca Shoal (Gulf of Mexico). The data indicate that Pleistocene bedrock is several meters deeper to the southwest than to the north east, yet in general, Holocene sediments are [~]3 to 4 m thick shelf-wide. The Pleistocene map demonstrates the significance of a westward-dipping bedrock surface to Holocene flooding history and coral reef evolution. Seismic facies show evidence for two possible Holocene stillstands. Aerial photographs provide information on the seabed surface, much of which is below seismic resolution. The photographs define a prominent, regional nearshore rock ledge that extends [~]2.5 km seaward from the keys' shoreline. They show that bands of rock ridges exist along the outer shelf and on the upper-slope terrace. The photographs also reveal four tracts of outlier reefs on the terrace, one more than had been documented seismically. Seismic and photographic data indicate the tracts are >200 km long, nearly four times longer than previously thought. New interpretations provide insights into a youngest possible terrace age (ca. 175 ka?) and the likelihood that precise ages of oxygen isotope substage 5e ooid tidal-bar and coral reef components may differ. The tidal-bar/reef complex forms the Florida Keys

The transition of a freshwater karst aquifer to an anoxic marine system, 2005, Garman Km, Garey Jr,
Jewfish Sink is located in the shallow seagrass flats of the Gulf of Mexico in west central Florida. Jewfish Sink was a submarine spring until the drought of 1961-1962 when it ceased flowing. Today, the sink is an anaerobic marine basin and provides the opportunity to study the implications of saltwater intrusion in coastal karstic areas. The biogeochemistry of Jewfish Sink was studied from summer 2001 through spring 2004. A distinct feature of the sink is the uniform cold temperature (16-17 degrees C) of the deeper anoxic water that does not match groundwater found nearshore or onshore (22-24 degrees C). There are four zones within the sink: oxic zone, transition zone, upper anoxic zone, and anoxic bottom water. The anoxic bottom water does not mix with water from above but may be linked to deep Gulf shelf water through ancient aquifer conduits. The other three zones vary seasonally in oxygen, salinity, and temperature because of limited mixing in the winter due to cooling and sinking of surface water. The walls of the anoxic zones have characteristic microbial mats that are found in other sulfidic karstic features in the area. Bacterial activity appears to be carbon limited in the anoxic zones where sulfate reduction appears to be the major metabolic process. The reduction of sulfate to sulfide appears to be driven by irregular influxes of organic matter including macroalgae, horseshoe crabs, and stingrays that become entrapped within the sink. Bacterial activity in the oxic zones appears to be phosphate limited. Although the system is partially isolated from the overlying marine ecosystem, organic input from above drives the bacterial anaerobic ecosystem, resulting in a sulfide pump. In this model, sulfide percolates up through the karst and removes oxygen from the overlying sediment, which has likely caused changes in the shallow benthic ecosystem. Jewfish Sink appears to be part of an extensive anoxic subterranean estuary that extends under parts of at least three coastal counties in Florida and can serve as a model for the effects of rising sea levels or aquifer mining

Results 1 to 7 of 7
You probably didn't submit anything to search for