Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That leucophor is one of a family of optical brightening agents that have been used with some degree of success in watertracing experiments. it has no color, but is readily detected by its distinctive fluorescence under ultra-violent light [9].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for hazard map (Keyword) returned 13 results for the whole karstbase:
Subsidence hazard prediction for limestone terrains, as applied to the English Cretaceous Chalk, 1987, Edmonds Cn, Green Cp, Higginbottom Ie,
Soluble carbonate rocks often pose a subsidence hazard to engineering and building works, due to the presence of either metastable natural solution features or artificial cavities. There is also an inherent danger to the public and lives have been lost because of unexpected ground collapses. Although site investigation techniques are becoming increasingly elaborate, the detection of hazardous ground conditions associated with limestones is frequently difficult and unreliable. Remedial measures to solve subsidence problems following foundation failure are expensive. It would be advantageous if areas liable to subsidence could be identified in a cost-effective manner in advance of planning and ground investigation. Hazard mapping could then be used by planners when checking the geotechnical suitability of a proposed development or by engineering geologists/geotechnical engineers to design the type of ground investigation best suited to the nature and scale of the potential hazard. Recent research focussed on the English Chalk outcrop has led to the development of two new models to predict the subsidence hazard for both natural solution features and artificial cavities. The predictive models can be used to map the hazard at any given chalkland locality, as a cost-effective precursor to ground investigation. The models, although created for the Chalk outcrop, have important implications for all types of limestone terrain. The basis of the predictive modelling procedure is an analysis of the spatial distribution of nearly 1600 natural solution features, and more than 850 artificial cavity locations, identified from a wide varietyy of sources, including a special appeal organized by CIRIA. A range of geological, hydrogeological and geomorphological factors are evaluated to identify significant relationships with subsidence. These factors are ranked, numerically weighted and incorporated into two quantitative subsidence hazard model formulae. The models can be applied to perform hazard mapping

A hazard map of the Magnesian Limestone in County Durham, 1998, Green M. R. , Forth R. A. , Beaumont D. ,
A large part of County Durham is underlain by carbonate rocks of Permian age, principally Magnesian Limestone. In recent years problems have been encountered in constructing on the Permian carbonates, due to dissolution followed by subsidence and/or sink hole formation. Features believed to be triggers for dissolution of limestone have been mapped and a weighted factor hazard map has been created. The map is based on an extensive review of existing site investigation data including a study of aerial photographs. Records of dissolution features noted by the County Council engineers have been incorporated into the hazard map. The map is intended as a guide for County Council Engineers who are planning site investigations within the area. The preparation of the map and its limitations are discussed

Hazard mapping of karst along the coast of the Algarve, Portugal, 1999, Forth Ra, Butcher D, Senior R,
The engineering geology of the West Algarve coastline between Cape St Vincent in the west and Fare in the east varies considerably, from the high limestone cliffs between Salema and Burgau to the lower but more problematic karstic cliffs around Lagos and east of Portimao. Geotechnical problems vary from toppling failure and rockfalls in the higher, more heavily jointed limestone and sandstone cliffs between Salema and Burgau, to sinkhole collapse, subsidence and gullying within the Miocene calcarenites and Pleistocene sands east of Portimao. This latter area is the subject of this paper. Field mapping was completed on scales of 1:2000 and 1:5000 to encompass geomorphology, geology and vegetation cover. Both sinkhole and sea cliff formation controlling factors are discussed and subsequently nine factors affecting potential hazard location are identified. The relative importance of these ten factors is determined and then each cell, 100 m(2) in size, is assessed for its individual score relative to the presence of, or degree of influence of each of the hazard forming processes. The resulting composite hazard map is aimed at planners and developers as a multipurpose map for general use. (C) 1999 Elsevier Science B.V. All rights reserved

Geohazard map of cover-collapse sinkholes in the 'Tournaisis' area, southern Belgium, 2002, Kaufmann O. , Quinif Y. ,
This paper reports the methodology developed to draw up a geohazard map of cover-collapse sinkhole occurrences in the 'Toumaisis' area. In this area, Carboniferous limestones are overlain by a Mesocenozoic cover, mainly consisting of marls, sand and clay. The thickness of this cover ranges from a few meters to more than 100 m. The surficial morphology of the area does not show any karstic evidence except for the occurrence of these collapses. From a paleogeographical point of view, a developed quaternary karst is not conceivable in the area. Recent works suggested that the collapses are set off from reactivated paleokarsts. The paleokarsts studied in the area proved to be the result of a particular weathering of the limestone. The organization of these paleokarsts seems very low and mainly guided by the limestone fracturing. As for most induced sinkholes, the reactivation of these paleokarsts is linked to the lowering of piezometric heads. In most of the area, a thick cover and intensive land use mask potential surface hints of the buried paleokarsts and of the fracturing of the bedrock. Aerial photographs and remote sensing techniques have therefore shown little results in delineating collapse hazard zones up to now. The study of the surficial morphology is also of little help. In order to draw up the geohazard map in such a difficult context, hydrogeological data and geological mapping information could only be used. These informations are based on a limited number of boreholes and piezometers and are thus, only valid on a regional scale. Records of former collapses were also available. These records were of great interest since sinkhole distribution is obviously clustered in the area. Bedrock roof and cover formation floor altitudes were digitized and adapted to produce digital thematic maps. Piezometric heads were imported from a calibrated groundwater model of the aquifer. These data and a digital elevation model of the area were integrated into a geographical information system (GIs) to produce a coherent 3-D description of the area on a regional scale. Parameters such as the dewatering of the limestone and the thickness of the cover formation where sinkholes occurred were then estimated. Density of former collapses was also computed. This showed that zones of high sinkhole occurrence coincide with zones of heavy lowering of piezometric heads. Combining the density of former collapses with the dewatering of the limestone enabled us to delineate zones of low, moderate and high collapse hazard. (C) 2002 Elsevier Science B.V. All rights reserved

Mapping of hazards to karst groundwater on the Velika planina plateau, 2005, Kovač, Ič, Gregor, Ravbar Nataš, A

The present paper presents the hazard mapping of groundwater on the Velika planina alpine karst plateau. There are no permanent residents on the plateau. Nevertheless, some serious hazards to the quality of the respective karst springs are arising from sports, tourist and farming activities. Some pollution has been already recorded in springs, showing the shortcomings of drinking water management also in uninhabited alpine karst areas, which are ordinarily very favourable for water protection.

Karst groundwater protection: First application of a Pan-European Approach to vulnerability, hazard and risk mapping in the Sierra de Libar (Southern Spain), 2006, Andreo B, Goldscheider N, Vadillo I, Vias Jm, Neukum C, Sinreich M, Jimenez P, Brechenmacher J, Carrasco F, Hotzl H, Perles Mj, Zwahlen F,
The European COST action 620 proposed a comprehensive approach to karst groundwater protection, comprising methods of intrinsic and specific vulnerability mapping, validation of vulnerability maps, hazard and risk mapping. This paper presents the first application of all components of this Pan-European Approach to the Sierra de Libar, a karst hydrogeology system in Andalusia, Spain. The intrinsic vulnerability maps take into account the hydrogeological characteristics of the area but are independent from specific contaminant properties. Two specific vulnerability maps were prepared for faecal coliforrns and BTEX These maps take into account the specific properties of these two groups of contaminants and their interaction with the karst hydrogeological system. The vulnerability assessment was validated by means of tracing tests, hydrological, hydrochemical and isotope methods. The hazard map shows the localization of potential contamination sources resulting from human activities, and evaluates those according to their dangerousness. The risk of groundwater contamination depends on the hazards and the vulnerability of the aquifer system. The risk map for the Sierra de Libar was thus created by overlaying the hazard and vulnerability maps. (C) 2005 Elsevier B.V. All rights reserved

Assessment of cover-collapse sinkholes in SW Sardinia (Italy), 2007, Ardau F, Balia R, Bianco M, De Waele J,
The SW part of Sardinia has been afflicted, in recent years, by several cover-collapse sinkholes mostly occurring in low-density population areas. The study area, that lies in the Iglesiente-Sulcis region, is characterized by the cropping out of the Palaeozoic basement related to the South European Hercynian chain, covered with Tertiary-Quaternary sediments. The main rock types that crop out are Palaeozoic metasandstones, metadolostones, metalimestones, shales and metaconglomerates, and Tertiary-Quaternary fluvial-lacustrine continental sediments. The combined application of several geophysical techniques, integrated with boreholes and geotechnical as well as hydrogeological measurements, proved to be very useful and promising in defining in detail the geological context in which each sinkhole has formed. Moreover, the gravity method, even when used alone, proved to be very effective in detecting the regional geological structures to which sinkholes are related. Eventually, the historical analysis of phenomena, the geological knowledge of the Iglesiente-Sulcis area and the results of properly designed geophysical surveys allows the most probable areas for cover-collapse sinkholes to occur in the future to be determined. In fact, this research pointed out that the depth of the sediment-covered Palaeozoic bedrock is one of the major constraints in delimiting hazardous areas, leading to the construction of a preliminary hazard map. This map shows a belt of high risk, and also suggests the areas in which further geophysical and geotechnical investigations should be carried out to estimate the depth of the bedrock

The protection of karst waters. A comprehensive Slovene Approach to vulnerability and contamination risk mapping, 2007, Nataš, A Ravbar
A general approach for karst water vulnerability and contamination risk assessment has been proposed, taking into account the special characteristics of Slovene karst landscapes, suiting Slovene environmental legislation and enabling comparison across European countries. The so-called Slovene Approach has been developed on the basis of work accomplished by the European COST Action 620. It incorporates the strongly modified COP method for intrinsic vulnerability assessment by integrating temporal hydrological variability, offering a new possibility to combine surface and groundwater protection, as well as by adapting it to source vulnerability mapping. The methodology provides also comprehensive risk analyses based on the intrinsic vulnerability, hazard and (re)source importance assessments. The proposed Slovene Approach has been first applied to the Podstenjšek water source catchment. Different other methods have been applied (EPIK, PI, COP, Simplified method) and compared. For the catchment area delineation, application of different vulnerability and risk methods a holistic research of the test site has been done by means of tracer tests, detail structural-lithological and geomorphological mapping, electrical resistivity imaging, as well as detail hazard mapping. Continuous monitoring of the springs? physico-chemical characteristics has been performed for the hydrograph analyses, water balance calculation and aquifer behaviour comprehension. The resulting Slovene Approach intrinsic vulnerability, hazard and risk maps are justified and validation with tracer tests has proved the method to give plausible results. The resulting maps provide improved source protection zones determination and identification of land mismanagement, as well as reorganisation and better practices for future planning.

Karst morphology and groundwater vulnerability of high alpine karst plateaus, 2009, Plan L. , Decker K. , Faber R. , Wagreich M. , Grasemann B.

High alpine karst plateaus are recharge areas for major drinking water resources in the Alps and many other regions. Well-established methods for the vulnerability mapping of groundwater to contamination have not been applied to such areas yet. The paper characterises this karst type and shows that two common vulnerability assessment methods (COP and PI) classify most of the areas with high vulnerability classes. In the test site on the Hochschwab plateau (Northern Calcareous Alps, Austria), overlying layers are mostly absent, not protective or even enhance point recharge, where they have aquiclude character. The COP method classifies 82% of the area as highly or extremely vulnerable. The resulting maps are reasonable, but do not differentiate vulnerabilities to the extent that the results can be used for protective measures. An extension for the upper end of the vulnerability scale is presented that allows identifying ultra vulnerable areas. The proposed enhancement of the conventional approach points out that infiltration conditions are of key importance for vulnerability. The method accounts for karst genetical and hydrologic processes using qualitative and quantitative properties of karst depressions and sinking streams including parameters calculated from digital elevations models. The method is tested on the Hochschwab plateau where 1.7% of the area is delineated as ultra vulnerable. This differentiation could not be reached by the COP and PI methods. The resulting vulnerability map highlights spots of maximum vulnerability and the combination with a hazard map enables protective measures for a manageable area and number of sites.

Dealing with gypsum karst problems: hazards, environmental issues, and planning, 2013, Cooper A. H. , Gutierrez F.

Gypsum dissolves rapidly underground and at the surface, forming gypsum karst features that include caves, subsidence areas, and sinkholes. Mapping these landforms, understanding the gypsum karst and local hydrogeology, and producing sinkhole susceptibility and hazard maps are crucial for development and public safety. Situations that change the local hydrogeology, such as dams, water abstraction, or injection/drainage, can accelerate dissolution and subsidence processes, increasing the severity of the problems; dams and canals built on gypsum karst can leak or fail catastrophically. Gypsum karst problems can be mitigated by careful surveying and scientific investigation followed by phased preventive planning, ground investigation, and construction incorporating sinkhole-proof designs. Towns and cities, including parts of Paris (France), Dzerzhinksk (Russia), Madrid and Zaragoza (Spain), Birzai (Lithuania), and Ripon and Darlington (UK), are developed on such ground requiring local planning guidelines and special construction methods. Roads, railways, pipelines, and bridges are particularly vulnerable to such subsidence and require special consideration. 

Karst Sinkholes Stability Assessment in Cheria Area, NE Algeria, 2013, Yacine Azizi, Med. Ridha Menani, Med Laid Hemila, Abderahmane Boumezbeur


Karst; Rock Mass Rating (RMR);Sinkhole collapse; Tebessa This research work deals with the problem of karst sinkhole collapse occurring in the last few years in Cheria area (NE Algeria). This newly revealed phenomenon is of a major constrain in land use planning and urbanization, it has become necessary to locate and assess the stability of these underground features before any planning operation. Several exploration methods for the localization of underground cavities have been considered. Geological survey, discontinuity analysis, resistivity survey [ground penetrating radar has not been used as most of the Mio-Plio-Quaternary filling deposit covering Eocene limestone contains clay layers which limits the applicability of the method (Roth et al. in Eng Geol 65:225–232, 2002)] and borehole drilling were undertaken in order to locate underground cavities and assess their depth, geometry, dimensions, etc. Laboratory testing and field work were also undertaken in order to determine both intact rock and rock mass properties. All the rock mechanics testing and measurement were undertaken according to the ISRM recommendations. It has been found that under imposed loading, the stability of the karst cavities depends on the geo-mechanical parameters (RMR, Rock Mass Rating; GSI, Geological Strength Index; E, Young modulus) of the host rock as well as the depth and dimensions of the gallery. It increases with RMR, GSI, E and depth and decreases as the cavity becomes wider. Furthermore, the calculation results show that a ratio (roof thickness to gallery width) of 0.3 and more indicate, a stable conditions. The results obtained in this work allow identifying and assessing the stability of underground karst cavities. The methodology followed in this paper can be taken as a road map in the establishment of a hazard map related to the studied phenomenon. This map will be a useful tool for the future urban extension planning in Cheria area.


Three of the approximately twenty-three municipal wastewater treatment lagoons constructed in the 1970s and 1980s in southeastern Minnesota’s karst region have failed through sinkhole collapse. Those collapses occurred between 1974 and 1992. All three failures occurred at almost exactly the same stratigraphic position. That stratigraphic interval, just above the unconformable contact between the Shakopee and Oneota Formations of the Ordovician Prairie du Chien Group is now recognized as one of the most ubiquitous, regional-scale, karst hydraulic high-transmissivity zones in the Paleozoic hydrostratigraphy of southeastern Minnesota. These karst aquifers have been developing multi-porosity conduit flow systems since the initial deposition of the carbonates about 480 million years ago. The existence of syndepositional interstratal karst unconformities between the Oneota and Shakopee Formations and between the Shakopee and St. Peter Formations, were recognized in the 1800s. About 270 million years ago galena, sphalerite and iron sulfides were deposited in pre-existing solution enlarged joints, bedding planes and caves. The region has been above sea level since the Cretaceous and huge volumes of fresh water have flowed through these rocks. The regional flow systems have changed from east-to-west in the Cenozoic, to north-to-south in or before the Pleistocene. The incision of the Mississippi River and its tributaries has and is profoundly rearranging the ground water flow systems as it varies the regional base levels during glacial cycles. The Pleistocene glacial cycles have removed many of the surficial karst features and buried even more of them under glacial sediments. High erosion rates from row crop agriculture between the us1850s and 1930s filled many of the conduit systems with soil. Over eighty years of soil conservation efforts have significantly reduced the flux of mobilized soil into the conduits. Those conduits are currently flushing much of those stored soils out of their spring outlets. Finally, the increased frequency and intensity of major storm events is reactivating conduit segments that have been clogged and inactive for millions of years.The karst solution voids into which the lagoons collapsed have formed over 480 million years. The recognition and mapping of this major karst zone will allow much more accurate karst hazard maps to be constructed and used in sustainable resource management decisions.

Mapping and monitoring geological hazards using optical, LiDAR, and synthetic aperture RADAR image data, 2014, Joyce K. E. , Samsonov S. V. , Levick S. R. , Engelbrecht J. , Belliss S.

Geological hazards and their effects are often geographically widespread. Consequently, their effective mapping and monitoring is best conducted using satellite and airborne imaging platforms to obtain broad scale, synoptic coverage. With a multitude of hazards and effects, potential data types, and processing techniques, it can be challenging to determine the best approach for mapping and monitoring. It is therefore critical to understand the spatial and temporal effects of any particular hazard on the environment before selecting the most appropriate data type/s and processing techniques to apply. This review is designed to assist the decision-making and selection process when embarking on a hazard mapping or monitoring exercise. It focuses on the application of optical, LiDAR, and synthetic aperture RADAR technologies for the assessment of pre-event risk and postevent damage. Geological hazards of global interest summarized here are landslides and erosion; seismic and tectonic hazards; ground subsidence; and flooding and tsunami

Results 1 to 13 of 13
You probably didn't submit anything to search for