Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That polje is (slavic word for field.) 1. a large, flat floored depression in karst limestone, whose long axis is developed parallel to major structural trends and can reach tens of kilometers in length. superficial deposits tend to accumulate on the floor. drainage may be by either surface watercourses (when the polje is said to be open) or swallow holes (a 'closed' polje.) their development is encouraged by any impedance in the karst drainage [19]. 2. polje or karst polje signifies the flatbottomed lands of closed basins which may extend over large areas, as much as 1,000 km2. the flat floor of the polje may consist of bare limestone, of a nonsoluble formation (and so with rolling topography), or of soil. the polje will show complex hydrogeological characteristics such as exsurgences, swallow holes, estavelles, and lost rivers. in colloquial use, the term polje is applied to flat-bottomed lands which are overgrown or are under cultivation [20]. 3. large flat-floored closed karst depression, with sharp slope breaks between the commonly alluviated floor and the marginal limestone. streams or springs drain into poljes and outflow is underground through ponors. commonly the ponors cannot transmit flood flows, so many poljes turn into wet-season lakes. the form of some poljes is related to the geological structure, but others are purely the projects of lateral dissolution and planation. the dinaric karst has many poljes; the livansko polje is around 60km long and 7km wide. the word is slovene (common also to other slav languages) for a field, reflecting the agricultural value of the alluvial polje floor soils [9]. synonym: interior valley; (french.) polje; (german.) polje; (greek.) polye; (italian.) polje; (russian.) polje; (spanish.) polje; (turkish.) golova, polye; (yugoslavian.) polje. see also karst polje.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for hydraulic parameters (Keyword) returned 22 results for the whole karstbase:
Showing 1 to 15 of 22
Assessing the importance of conduit geometry and physical parameters in karst systems using the storm water management model (SWMM), , Peterson Eric W. , Wicks Carol M. ,
SummaryQuestions about the importance of conduit geometry and about the values of hydraulic parameters in controlling ground-water flow and solute transport through karstic aquifers have remained largely speculative. One goal of this project was to assess the role that the conduit geometry and the hydraulic parameters have on controlling transport dynamics within karstic aquifers. The storm water management model (SWMM) was applied to the Devil's Icebox-Connor's Cave System in central Missouri, USA. Simulations with incremental changes to conduit geometry or hydraulic parameters were performed with the output compared to a calibrated baseline model. Ten percent changes in the length or width of a conduit produced statistically significant different fluid flow responses. The model exhibited minimal sensitivity to slope and infiltration rates; however, slight changes in Manning's roughness coefficient can highly alter the simulated output.Traditionally, the difference in flow dynamics between karstified aquifers and porous media aquifers has led to the idea that modeling of karst aquifers is more difficult and less precise than modeling of porous media aquifers. When evaluated against models for porous media aquifers, SWMM produced results that were as accurate (10% error compared to basecase). In addition, SWMM has the advantage of providing data about local flow. While SWMM may be an appropriate modeling technique for some karstic aquifers, SWMM should not be viewed as a universal solution to modeling karst systems

Numerical simulation as a tool for checking the interpretation of karst spring hydrographs, 1997, Eisenlohr L, Kiraly L, Bouzelboudjen M, Rossier Y,
A schematic representation of karst aquifers may be that of a high hydraulic conductivity channel network with kilometre-wide intervals, surrounded by a low hydraulic conductivity fractured limestone volume and connected to a local discharge area, the karst spring, The behaviour of the karst spring (hydrographs, chemical or isotopic composition, etc.) represents the global response of the karst aquifer to input events. The available data an karst aquifer hydraulic parameters are limited, Global response is therefore more easily obtained and is commonly used to make inferences on the recharge and groundwater How processes, as well as on the hydraulic parameter fields. Direct verification of these interpretations is, obviously, very difficult. We have used an indirect method of verification, consisting of introducing well-defined theoretical karst structures into a finite element model and then analysing the simulated global response according to presently accepted interpretation schemes. As we know what we put into the numerical model, the validity of any interpretation may be checked. The first results indicate that some of the generally accepted interpretations are not necessarily true. In particular: (i) separation of simulated recession hydrographs into several components shows that different exponential components do not necessarily correspond to aquifer volumes with different hydraulic conductivities: (ii) non-exponential parts of recession hydrographs do not always give information about the infiltration process: and (iii) the recession coefficient of the baseflow (i.e. the last, nearly exponential part of the recession hydrograph) depends on the global configuration of the whole karst aquifer, not just on the hydraulic properties of the low hydraulic conductivity volumes. (C) 1997 Elsevier Science B.V

Parameter identification in double-continuum models applied to karst aquifers., 1997, Mohrlok U. , Kienie J. , Teutsch G.
One modelling approach which proved successful in describing the groundwater flow within karst terraines is based on the double-continuum concept. This concept was first introduced by Teutsch (1988) and subsequently used by Teutsch & Sauter (1991), Sauter (1992), Lang (1995), Mohrlok (1996) and others to describe the ambivalent characteristics of karst aquifers. However, the approach has the drawback that the double-continuum model parameters can be determined only through model calibration (inverse approach), i.e. so far the model parameters cannot be related directly to physical field measurements. Therefore, in order to develop a better understanding of the physical significance of hydraulic parameters within double-continuum systems, a detailed numerical modeling study was conducted. For this purpose a number of synthetic but realistic karst aquifer network geometries were generated and analysed. The response of the karst network to recharge events was simulated using a detailed discrete fracture flow model with the resulting head and spring flow variographs being subsequently assumed as field measurements. This 'measured' data was then used for the calibration of a double-continuum model and the resulting parameters were compared to the original karst network geometry data. This comparison was used to develop mathematical/physical relationships between the discrete karst network geometry representing reality and the double-continuum parameter representation of it.

Vertical leakage and vertically averaged vertical conductance for karst lakes in Florida, 1998, Motz L. H. ,
In the karst lake district in peninsular Florida in the southeastern United States, as many as 70% of the lakes lack surface outlets, and groundwater outflow is an important part of the water budgets of these: lakes. For 11 karst lakes in the Central Lake District, vertical leakage from the lakes to the upper Floridan aquifer averages 0.12 to 4.27 m yr(-1). The vertically averaged vertical conductance K-v/b, a coefficient that represents the average of the vertical conductances of the hydrogeologic units between the bottom of a lake and the top of the upper Floridan aquifer, was determined to range from 0.0394 to 1.00 yr(-1) for these lakes. For six of the lakes, various hydraulic parameters previously calculated by other investigators are shown to be equivalent to the K,ib values calculated in this study. If K-v/b is determined for a lake, then vertical leakage can be estimated for other conditions of lake stage and hydraulic head in the upper Floridan aquifer, using K-v/b for the lake and Darcy's equation written for vertical flow. The methodology described in this paper for quantifying K-v/b, which requires only limited data (i.e., vertical leakage, lake stage, and hydraulic head in the upper Floridan aquifer), could be used to investigate the apparent association between relatively large K-v/b values and lake level instabilities at some lakes in the Central Lake District and similar hydrogeologic settings. This methodology for calculating vertical leakage is applicable to the Central Lake District in Florida and to other similar lake and groundwater systems

Quantitative analysis of tracer breakthrough curves from tracing tests in karst aquifers, 1999, Field M. S.
Numerical analysis of tracer-breakthrough curves allow quick reliable estimates for many of the basic hydraulic and geometric parametersTracer-breakthrough curve analysis relies on the application of a continuous mass balance model for transport parameter estimationReadily obtained hydraulic parameters required for modeling include peak arrival time and peak velocity, longitudinal dispersion, and Peclet numberGeometric parameters include volume, cross-sectional area, and diameterSome boundary-layer effects can also be roughly estimated

Solutional and erosional morphology, 2000, Lauritzen Se. , Lundberg J.
Caves are produced through the action of speleogenetic agents acting under various constraints to produce speleogenetic facies. These facies, expressed at the meso- and micro-scale, reflect the major and minor speleogenetic agents that operated on that cave; they also reflect the history of the cave, both during speleogenesis proper and during the post-speleogenetic phase, in particular the most recent history. Geological control is evident through the association of caves with guiding voids (the singularities that govern permeability) and passage shape with rock chemistry (solubility). Hydrological control guides the locus and direction of dissolution; phreatic conditions support omnidirectional dissolution and thus hydraulically controlled tubular forms, while vadose conditions allow only unidirectional dissolution and thus gravity-controlled canyon forms and karren-like features. Of the micro-forms, scallops are specific flow indicators that yield both directional and quantitative information like flow rates and various hydraulic parameters specific to the cave passages. The presence of a sediment fill may further direct corrosion; in the phreatic zone this causes paragenesis; in the vadose zone, sediments cause lateral undercutting and eventually collapse. Vadose streams display many of the forms of surface streams, such as migrating meanders, entrenchment, rock-mill pot-holes, and waterfalls. Vadose shafts, dome-pits and condensation-corrosional forms are perhaps specific to the cave enviroment. The various vadose, phreatic and certain water-table-specific forms are, in combination, powerful methods for reconstructing phases of speleogenesis as well as external base levels. Combined with speleothem dating techniques, they become important methods for determining erosion rates and landscape evolution.

Derivation of effective hydraulic parameters of a karst aquifer from discharge hydro-graph analysis, 2001, Baedke S. J. , Krothe N. C.

Derivation of effective hydraulic parameters of a karst aquifer from discharge hydrograph analysis, 2001, Baedke Sj, Krothe Nc,
In well-developed karst terrains, three or more distinct portions of the karst continuum can be identified from hydrographs of springs issuing from the karat aquifer. Hydrographs from mio karat springs within the same drainage basin at the Crane Naval Surface Warfare Center, Indiana, have been analyzed, and ratios of transmissivity and specific yield (T/S-y) have been established for the conduit and diffuse flow systems. These ratios have been compared with values of T derived from aquifer tests, so that independent values of S-y can be calculated for the diffuse system. Similarly, if the value of S-y is assumed to be 1.0 for a pure conduit, then independent values of T can be calculated for this end-member of the karst continuum. The values of T and S-y derived from this study are similar to values obtained from a dye trace of the conduit-dominated flow system and of values derived from aquifer tests of the diffuse flow system. Values of T for the conduit system of these springs may need to be established at a local scale, while the values for the diffuse flow system may be applicable at a regional scale. A hydrograph separation using isotopic data suggests that the intermediate-flow system represents a mix of water from the conduit and diffuse flow systems. If this portion of the hydrograph is a truly mixing phenomena, ratios of TIS cannot be determined from the hydrograph analysis presented herein. However. if instead, the intermediate-flow system represents water released from a third reservoir (such as small fractures), ratios of T/S, can be established for the intermediate-flow system

Exploration techniques for karst groundwater resources., 2001, Bakalowicz M.
Porous and fissure aquifers display statistical homogeneity of their physical and hydraulic characteristics on a scale ranging from tens to several hundreds of meters. Such homogeneity is a product of the relatively small spatial variability of these characteristics and creates conditions of general hydraulic continuity throughout the entire saturated zone. Their groundwater resources can be explored by a simple approach, i.e. defining the aquifer geometry from geological data, and determining local hydraulic parameters from pumping tests; finally, the local data are extended to characterise the entire aquifer through regionalizing techniques. However, within the infiltration and saturated zones of carbonate aquifers, karst processes create a peculiar void heterogeneity : voids may reach several meters in diameter and several kilometers in length. These voids are organized in a hierarchic network from the input surface often to a single spring: this is the conduit or drainage network. Therefore the network should be fully characterized prior to assessing the groundwater resources of a karst aquifer and its possible storage capacity, i.e. the network's transmissive or drainage function and its links with storage components (its storage function). Traditionally, speleological exploration is considered the best technique for directly characterizing a drainage network. Unfortunately, this usually gives an incorrect view of the karst aquifer because only a few parts (or none at all) are known when there is no access to the saturated zone. The classical hydrogeological approach is thus unsuitable for assessing karst aquifers. In this context, karst hydrogeologists must adopt the classical approach of physicians and biologists examining living bodies, by characterizing a karst aquifer, its resources and storage by accurate description of the void organization and an analysis of its overall behavior (or functioning) and that of its different parts or organs. With such an approach, a karst aquifer is considered as a living organism composed of different types of organs interlinked by functional relationships. Unlike physicians, hydrogeologists generally have to discover the extent of the body they wish to study (the karst system as a drainage unit, its limits and the boundary conditions). Therefore, as in the field of medicine^ techniques are used for describing the aquifer in bi- or tri-dimensional space (geology, geophysics) and for characterizing its functioning (hydrodynamics, natural tracing, hydrological balance). Moreover, data from these techniques are interpreted in order to propose a diagnosis, i.e. for building a conceptual model of the studied aquifer. In the next step, as in medicine, the conceptual model can be assessed with localized tests, such as artificial tracing and diver exploration for borehole positioning and pumping tests. Methods for interpreting tracing and pumping tests must obviously be adapted to the specific nature of karst, i.e. they cannot be based on classical models whose basic assumptions are never verified in the karstic medium. Finally, karst hydrogeologists have to set up and implement a complex set of techniques for describing the extent and limits of a karst system, exploring its drainage pattern, and analyzing its behaviour. All geoscience disciplines are ultimately required for the comprehensive exploration of groundwater resources in karst aquifers.

Identifying the flow systems in a karstic-fissured-porous aquifer, the Schneealpe, Austria, by modelling of environmental O-18 and H-3 isotopes, 2002, Maloszewski P. , Stichler W. , Zuber A. , Rank D. ,
The Schneealpe karst massif of Triassic limestones and dolomites with the altitude up to 1800 m a.s.l., situated 100 km SW of Vienna in Kalkalpen, is the main drinking water resource for the city. The catchment area of about 23 km(2) is drained by two springs: the Wasseralmquelle (196 Vs) and the Siebenquellen (310 1/s). This karstic aquifer is approximated by two interconnected parallel flow systems of: (a) a fissured-porous aquifer, and (b) karstic channels. The fissured-porous aquifer is of a high storage capacity and contains mobile water in the fissures and stagnant water in the porous matrix. The water enters this system at the surface and flows through it to drainage channels, which are regarded as a separate flow system, finally drained by both springs. The channels are also connected with sinkholes, which introduce additional water directly from the surface, Measurements of O-18 and tritium in precipitation and springs were modelled by a combined application of lumped-parameter models. Modelling yielded information on the mean values of the following hydraulic parameters: (1) The volume of water in the whole catchment area is 255 X 10(6) m(3), of which about 1.8 X 10(6) m(3) are in channels and 253 X 10(6) m(3) in the fissured-porous aquifer. (2) The total volumetric flow rate is 506 1/s, of which 77 1/s comprises direct flow from sinkholes to springs and 429 1/s are contributed to fissured-porous aquifer. (3) As the volume of the massif is 16.6 x 10 m(3), the total water saturated porosity (fissures and micropores of the matrix) is 1.5% and the channel porosity is about 0.01%. (C) 2002 Elsevier Science B.V. All rights reserved

Karstification and Groundwater Flow, 2003, Kiraly, L.

One of the principal aims of hydrogeology is to propose a reasonably adequate reconstruction of the groundwater flow field, in space and in time, for a given aquifer. For example, interpretation of the chemical and isotopic composition of groundwater, understanding of the geothermal conditions (anomalies) or forecasting the possible effects of industrial waste disposals and of intensive exploitation nearly always would require the knowledge of the regional and/or local groundwater flow systems such as defined by Toth (1963). The problem of estimating the groundwater flow field in fractured and karstified aquifers is approached within the framework of a conceptual diagram showing the relationship between groundwater flow, hydraulic parameters (aquifer properties and boundary conditions), distribution of voids and geological factors.
Autoregulation between groundwater flow and karst aquifer properties, duality of karst, nested model of geological discontinuities, scale effect on hydraulic parameters and use of numerical finite element models to check the interpretation of the global response of karst springs are some of the subjects addressed by the author. Inferences on groundwater flow regime with respect to the stage of karst evolution can be made only if the hydraulic parameter fields and the boundary conditions are known by direct observations, or estimated by indirect methods for the different types of karst. Practical considerations on the monitoring strategies applied for karst aquifers, and on the interpretation of the global response obtained at karst springs will complete the paper, which throughout reflects the point of view of a hydrogeologist.


Hydrogeological overview of the Bure plateau, Ajoie, Switzerland, 2003, Kovacs A. , Jeannin P. Y. ,
This study presents a hydrogeological synthesis of the most recent data from the Bure plateau in Ajoie, canton Jura, NW Switzerland. Included is a complete reappraisal of aquifer geometry and aquifer boundaries, the delineation of catchment areas based on tracing experiments, and the evaluation of the hydraulic role of different hydrostratigraphic units. Furthermore, it presents GIS-based calculations on the mean piezometric surface, the thickness of the unsaturated zone and on the thickness of the minimum and mean saturated zones. The spatial extension of the shallow karst zone is also evaluated. A coherent conceptual model and the two-dimensional steady-state combined discrete channel and continuum type numerical model of the aquifer has been constructed. The research site is 83 km(2) in area and is underlain by slightly folded layers of Mesozoic limestones and marls. The Bure plateau is dissected by normal faults, which form a succession of elongated horst and graben structures. The main aquifer consists of Maim limestones, with thicknesses varying between zero (eastern border) and 320 m (south-eastern regions). The aquifer is bounded from below by the Oxfordian Marls. The underlying sediments of Middle Jurassic age are considered to be hydraulically independent. The surface topography of the Oxfordian Marls reveals the periclinal termination of a wide anticline over the plateau and a syncline in the southern parts. The aquifer contains three marly intercalations. Tracing experiments prove that marl layers do not act as regional aquicludes. These experiments also allow for the division of the aquifer surface into several water catchments. Based on tracing tests and piezometric data a NW-SE oriented groundwater divide seems to extend in the regions of Porrentruy-Bure-Croix. Calculations of the average (matrix flow) and minimum (conduit flow) water tables indicate an extended shallow karst zone in the region of Boncourt-Buix-St-Dizier. The thickness of the saturated zone increases towards the extremities of the research site, being thickest in the South. The thickness of the unsaturated zone shows a large variation, reaching its maximum in the central areas. Numerical model calculations roughly reproduce the observed hydraulic heads and mean spring discharges, they confirm current ideas about hydraulic parameters and suggest the existence of extended karst subsystems throughout the model domain

Geometry and hydraulic parameters of karst aquifers: a hydrodynamic modeling approach, 2003, Kovacs A.

The Aubonne karst aquifer (Swiss Jura), 2005, Leutscher M. , Perrin J. ,
A synthesis of the hydrogeological investigations carried out in an important karst region of the Jura Mountains led to the recognition of a major hydrological system: the Aubonne-Toleure-Malagne system. The continuous monitoring of hydraulic parameters at the main outlets established a mean discharge of the system of more than 6 m(3)/s. A delimitation of the Aubonne catchment area is proposed in accordance with the water balance and the geology. Tracer tests outline the presence of a complex karst network which is closely related to the structural context. A schematic organisation of this network is proposed and a major divergence towards the nearby Montant system is set in evidence. Geological observations provide also evidences for a precise delineation of the catchment area: six major functional elements for the recharge of the aquifer are distinguished and transversal drainages towards the Aubonne spring system are outlined along major strike-slip faults. Combining hydrological information available on the Aubonne karst aquifer provides the indispensable background data for the management and the protection of this water resource

A quantitative method for the characterisation of karst aquifers based on spring hydrograph analysis, 2005, Kovacs A. , Perrochet P. , Kiraly L. , Jeannin P. Y. ,
This paper presents a method for characterizing flow systems in karst aquifers by acquiring quantitative information about the geometric and hydraulic aquifer parameters from spring hydrograph analysis. Numerical sensitivity analyses identified two fundamentally different flow domains, depending on the overall configuration of aquifer parameters. These two domains have been quantitatively characterized by deducing analytical solutions for the global hydraulic response of simple two-dimensional model geometries. During the baseflow recession of mature karst systems, the hydraulic parameters of karst conduits do not influence the drainage of the low-permeability matrix. In this case the drainage process is influenced by the size and hydraulic parameters of the low-permeability blocks alone. This flow condition has been defined as matrix-restrained flow regime (MRFR). During the baseflow recession of early karst systems and fissured systems, as well as the flood recession of mature systems, the recession process depends on the hydraulic parameters and the size of the low-permeability blocks, conduit conductivity and the total extent of the aquifer. This flow condition has been defined as conduit-influenced flow regime (CIFR). Analytical formulae demonstrated the limitations of equivalent models. While equivalent discrete-continuum models of early karst systems may reflect their real hydraulic response, there is only one adequate parameter configuration for mature systems that yields appropriate recession coefficient. Consequently, equivalent discrete-continuum models are inadequate for simulating global response of mature karst systems. The recession coefficient of equivalent porous medium models corresponds to the transition between matrix-restrained and conduit-influenced flow. Consequently, equivalent porous medium models yield corrupted hydrographs both in mature and early systems, and this approach is basically inadequate for modelling global response of karst aquifers. (c) 2004 Elsevier B.V. All rights reserved

Results 1 to 15 of 22
You probably didn't submit anything to search for