Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That clog, to is the action of blocking fluid flow paths, especially around a well bore [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for hydrogeologic setting (Keyword) returned 11 results for the whole karstbase:
Karst Hydrogeology and Geomorphology of the Sierra de El Abra and the Valles-San Luis Potosí Region, México, PhD Thesis, 1977, Fish, Johnnie Edward

The general objective of this work was to develop a basic understanding of the karst hydrology, the nature and origin of the caves, the water chemistry, the surface geomorphology, and relationships among these aspects for a high relief tropical karst region having a thick section of limestone. The Valles-San Luis Potosí region of northeastern México, and in particular, the Sierra de El Abra, was selected for the study. A Cretaceous Platform approximately 200 km wide and 300 km long (N-S) delimits the region of interest. A thick Lower Cretaceous deposit of gypsum and anydrite, and probably surrounded by Lower Cretaceous limestone facies, is overlain by more than 1000 m of the thick-bedded middle Cretaceous El Abra limestone, which has a thick platform-margin reef. The Sierra de El Abra is a greatly elongated range along the eastern margin of the Platform. During the late Cretaceous, the region was covered by thick deposits of impermeable rocks. During the early Tertiary, the area was folded, uplifted, and subjected to erosion. A high relief karst having a wide variety of geomorphic forms controlled by climate and structure has developed. Rainfall in the region varies from 250-2500 mm and is strongly concentrated in the months June-October, when very large rainfalls often occur.
A number of specific investigations were made to meet the general objective given above, with special emphasis on those that provide information concerning the nature of ground-water flow systems in the region. Most of the runoff from the region passes through the karstic subsurface. Large portions of the region have no surface runoff whatsoever. The El Abra Formation is continuous over nearly the whole Platform, and it defines a region of very active ground-water circulation. Discharge from the aquifer occurs at a number of large and many small springs. Two of them, the Coy and the Frío springs group, are among the largest springs in the world with average discharges of approximately 24 m³/sec and 28 m³/sec respectively. Most of the dry season regional discharge is from a few large springs at low elevations along the eastern margin of the Platform. The flow systems give extremely dynamic responses to large precipitation events; floods at springs usually crest roughly one day after the causal rainfall and most springs have discharge variations (0max/0min) of 25-100 times. These facts indicate well-developed conduit flow systems.
The hydrochemical and hydrologic evidence in combination with the hydrogeologic setting demonstrate the existence of regional ground-water flow to several of the large eastern springs. Hydrochemical mixing-model calculations show that the amount of regional flow is at least 12 m³/sec, that it has an approximately constant flux, and that the local flow systems provide the extremely variable component of spring discharge. The chemical and physical properties of the springs are explained in terms of local and regional flow systems.
Local studies carried out in the Sierra de El Abra show that large conduits have developed, and that large fluctuations of the water table occur. The large fossil caves in the range were part of great deep phreatic flow systems which circulated at least 300 m below ancient water tables and which discharged onto ancient coastal plains much higher than the present one. The western margin swallet caves are of the floodwater type. The cave are structurally controlled.
Knowledge gained in this study should provide a basis for planning future research, and in particular for water resource development. The aquifer has great potential for water supply, but little of that potential is presently used.


ROADWAY DESIGN IN KARST, 1993, Fischer Ja, Fischer Jj, Greene Rw,
To minimize costs in conventional roadway design, as much low or valley areas as possible are utilized. In many areas of the eastern United States, these valleys are filled with carbonate rocks. Excavation is used to minimize grades-this removes protective overburden or rock cover over cavities; fill also is used to minimize grades-this can increase loads on marginally stable soil arches or rock cavity roofs. Surface water runoff is directed toward low areas-the low areas are likely zones of weakness or solutioning, thereby increasing the potential for sinkhole development and providing an opportunity for groundwater contamination, and remediation usually consists of blindly filling rock cavities, thus either channeling the still-contaminated surface flows someplace else or perhaps eliminating useful ground water recharge conduits. The authors suggest that the key to proper design, construction, and remediation for roadways planned in karst is to understand the geologic and hydrogeologic setting of the route(s) or locale, perform true geotechnical engineering design, and remediate with an understanding of the overall engineering geologic, hydrogeologic, and environmental picture

DIVERSITY - A NEW METHOD FOR EVALUATING SENSITIVITY OF GROUNDWATER TO CONTAMINATION, 1993, Ray J. A. , Odell P. W. ,
This study outlines an improved method, DIVERSITY, for delineating and rating groundwater sensitivity. It is an acronym for Dlspersion/VElocity-Rated SensitivITY, which is based on an assessment of three aquifer characteristics: recharge potential, flow velocity, and flow directions. The primary objective of this method is to produce sensitivity maps at the county or state scale that illustrate intrinsic potential for contamination of the uppermost aquifer. Such maps can be used for recognition of aquifer sensitivity and for protection of groundwater quality. We suggest that overriding factors that strongly affect one or more of the three basic aquifer characteristics may systematically elevate or lower the sensitivity rating. The basic method employs a three-step procedure: (1) Hydrogeologic settings are delineated on the basis of geology and groundwater recharge/discharge position within a terrane. (2) A sensitivity envelope or model for each setting is outlined on a three-component rating graph. (3) Sensitivity ratings derived from the envelope are extrapolated to hydrogeologic setting polygons utilizing overriding and key factors, when appropriate. The three-component sensitivity rating graph employs two logarithmic scales and a relative area scale on which measured and estimated values may be plotted. The flow velocity scale ranging from 0.01 to more than 10,000 m/d is the keystone of the rating graph. Whenever possible, actual time-of-travel values are plotted on the velocity scale to bracket the position of a sensitivity envelope. The DIVERSITY method was developed and tested for statewide use in Kentucky, but we believe it is also practical and applicable for use in almost any other area

Study on the contamination of fracture-karst water in Boshan District, China, 1997, Zhu X. Y. , Xu S. H. , Zhu J. J. , Zhou N. Q. , Wu C. Y. ,
Boshan is an industrial city in the center of Shandong Province where ground water is the only source for the urban water supply. The major water resource is fracture-karst water in the middle Ordovician carbonate rocks. Based on the hydrogeological investigation and mapping in this area we studied the geologic and hydrogeologic settings, the major pollution sources and the pathways of contamination, the principal contaminants, and their spatial distribution in ground water. The ground-water quality has also been estimated by the fuzzy mathematic method. The geostatistical method, such as the kriging method, was taken to simulate spatial distribution of the contaminants. The grey system method was adopted to forecast future contamination. An attempt at the remediation of Cr6 contamination in fracture-karst water was also discussed. Finally, some proposals for the protection of the ground-water environment in Boshan District are offered

Vertical leakage and vertically averaged vertical conductance for karst lakes in Florida, 1998, Motz L. H. ,
In the karst lake district in peninsular Florida in the southeastern United States, as many as 70% of the lakes lack surface outlets, and groundwater outflow is an important part of the water budgets of these: lakes. For 11 karst lakes in the Central Lake District, vertical leakage from the lakes to the upper Floridan aquifer averages 0.12 to 4.27 m yr(-1). The vertically averaged vertical conductance K-v/b, a coefficient that represents the average of the vertical conductances of the hydrogeologic units between the bottom of a lake and the top of the upper Floridan aquifer, was determined to range from 0.0394 to 1.00 yr(-1) for these lakes. For six of the lakes, various hydraulic parameters previously calculated by other investigators are shown to be equivalent to the K,ib values calculated in this study. If K-v/b is determined for a lake, then vertical leakage can be estimated for other conditions of lake stage and hydraulic head in the upper Floridan aquifer, using K-v/b for the lake and Darcy's equation written for vertical flow. The methodology described in this paper for quantifying K-v/b, which requires only limited data (i.e., vertical leakage, lake stage, and hydraulic head in the upper Floridan aquifer), could be used to investigate the apparent association between relatively large K-v/b values and lake level instabilities at some lakes in the Central Lake District and similar hydrogeologic settings. This methodology for calculating vertical leakage is applicable to the Central Lake District in Florida and to other similar lake and groundwater systems

Types of karst and evolution of hydrogeologic settings, 2000, Klimchouk A. , Ford D.
Karst is treated as a specific kind of fluid circulation system capable to self-development and self-organization. Active karst may evolve at wide range of geological environments, from deep-seated (without any apparent relation to the surface) to sub-surface, and be represented by confined and unconfined circulation systems. Extrinsic factors and intrinsic mechanisms of karst development change regularly and considerably within the general cycle of geological evolution of a soluble rocks or, more specifically, within hydrogeologic cycle. The latter encompasses a period of exposure between major transgressions and is characterized by progressively expanding meteoric groundwater circulation. A broad evolutionary approach is therefore needed to differentiate between karst types, which concurrently represent distinct stages of karst development. This is also a mean to adequately classify speleogenetic settings. Evolutionary typology of karst considers the whole cycle of a formation's life, from deposition (syngenetic karst) through deep burial to exposure and denudation. The group of intrastratal karst types includes deep-seated, subjacent, entrenched and denuded karst, the latter also fall into the group of exposed karst types. Exposed karst includes also open karst which represents the pure line of exposed development, that is karst evolved solely when the soluble rock has been exposed to the surface. Exposed karst development can be interrupted by a subsequent burial (buried karst), with paleokarst formed in result, and rejuvenated by exhumation. The types of karst are marked by characteristic associations of structural prerequisites for groundwater flow and speleogenesis, flow regime, recharge mode and recharge/discharge configurations, groundwater chemistry and a degree of inheritance. Consequently, these associations generate particular types of caves.

Failure of an industrial wastewater lagoon in a karst terrain and remedial action, 2001, Memon B. A. , Azmeh M. M. ,
Failure of a wastewater lagoon, caused by development of a sinkhole underneath the lagoon at a site in the Lehigh River Valley near Allentown, Pennsylvania, allowed waste water to enter into the underlying karstified carbonate aquifer, a source of public water supply in the area. Identification of the contamination and development of an appropriate site-specific remediation plan required understanding of site geology, stratigraphy, hydrogeologic setting and aquifer characteristics. Information on site geology and hydrogeology, including aquifer geometry and matrix, occurrence and flow of groundwater were collected and evaluated. Core holes were drilled, geophysically logged, and correlated to define stratigraphy and structural controls to the movement of groundwater and pollutants. Monitoring wells were installed. Water level data collected on a continuous basis were used to determine the direction and gradient and also correlated with climatic changes to define amplitude of fluctuations of groundwater. Correlation of lithologic logs and interpretation of geophysical logs identified five water-producing zones separated by semi-confined layers within the carbonate aquifer. Water samples were collected from different water producing zones and analyzed to delineate vertical and horizontal extent of contamination. Pentaerythritol (PE), which was directly linked with the failure of lagoon, was identified as a pollutant in groundwater. PE was found to be present in the lower water-producing zones. Based on a geologic and hydrogeologic model of the site and understanding of flow regime and presence of PE in the lower water producing zones, a remedial plan (a pump-and-treat system) was developed and implemented to remediate the aquifer. This remedial action has reduced the PE level in groundwater and also created a pressure trough as a barrier to off-site migration

Morphometry and distribution of isolated caves as a guide for phreatic and confined paleohydrological conditions, 2005, Frumkin A, Fischhendler I,

Isolated caves are a special cave type common in most karst terrains, formed by prolonged slow water flow where aggressivity is locally boosted. The morphometry and distribution of isolated caves are used here to reconstruct the pateohydrology of a karstic mountain range. Within a homogenous karstic rock sequence, two main types of isolated caves are distinguished, and each is associated with a special hydrogeologic setting: maze caves form by rising water in the confined zone of the aquifer, under the Mt. Scopus Group (Israel) confinement, while chamber caves are formed in phreatic conditions, apparently by lateral flow mixing with a vadose input from above. (c) 2004 Elsevier B.V. All rights reserved


Hypogene Speleogenesis: Hydrogeological and Morphogenetic Perspective., 2007, Klimchouk A. B.

This book provides an overview of the principal environments, main processes and manifestations of hypogenic speleogenesis, and refines the relevant conceptual framework. It consolidates the notion of hypogenic karst as one of the two major types of karst systems (the other being epigenetic karst). Karst is viewed in the context of regional groundwater flow systems, which provide the systematic transport and distribution mechanisms needed to produce and maintain the disequilibrium conditions necessary for speleogenesis. Hypogenic and epigenic karst systems are regularly associated with different types, patterns and segments of flow systems, characterized by distinct hydrokinetic, chemical and thermal conditions. Epigenic karst systems are predominantly local systems, and/or parts of recharge segments of intermediate and regional systems. Hypogenic karst is associated with discharge regimes of regional or intermediate flow systems.

Various styles of hypogenic caves that were previously considered unrelated, specific either to certain lithologies or chemical mechanisms are shown to share common hydrogeologic genetic backgrounds. In contrast to the currently predominant view of hypogenic speleogenesis as a specific geochemical phenomenon, the broad hydrogeological approach is adopted in this book. Hypogenic speleogenesis is defined with reference to the source of fluid recharge to the cave-forming zone, and type of flow system. It is shown that confined settings are the principal hydrogeologic environment for hypogenic speleogenesis. However, there is a general evolutionary trend for hypogenic karst systems to lose their confinement due to uplift and denudation and due to their own expansion. Confined hypogenic caves may experience substantial modification or be partially or largely overprinted under subsequent unconfined (vadose) stages, either by epigenic processes or continuing unconfined hypogenic processes, especially when H2S dissolution mechanisms are involved.

Hypogenic confined systems evolve to facilitate cross-formational hydraulic communication between common aquifers, or between laterally transmissive beds in heterogeneous soluble formations, across cave-forming zones. The latter originally represented low-permeability, separating units supporting vertical rather than lateral flow. Layered heterogeneity in permeability and breaches in connectivity between different fracture porosity structures across soluble formations are important controls over the spatial organization of evolving ascending hypogenic cave systems. Transverse hydraulic communication across lithological and porosity system boundaries, which commonly coincide with major contrasts in water chemistry, gas composition and temperature, is potent enough to drive various disequilibrium and reaction dissolution mechanisms. Hypogenic speleogenesis may operate in both carbonates and evaporites, but also in some clastic rocks with soluble cement. Its main characteristic is the lack of genetic relationship with groundwater recharge from the overlying or immediately adjacent surface. It may not be manifest at the surface at all, receiving some expression only during later stages of uplift and denudation. In many instances, hypogenic speleogenesis is largely climate- independent.

There is a specific hydrogeologic mechanism inherent in hypogenic transverse speleogenesis (restricted input/output) that suppresses the positive flow-dissolution feedback and speleogenetic competition in an initial flowpath network. This accounts for the development of more pervasive channeling and maze patterns in confined settings where appropriate structural prerequisites exist. As forced-flow regimes in confined settings are commonly sluggish, buoyancy dissolution driven by either solute or thermal density differences is important in hypogenic speleogenesis.

In identifying hypogenic caves, the primary criteria are morphological (patterns and meso-morphology) and hydrogeological (hydrostratigraphic position and recharge/flow pattern viewed from the perspective of the evolution of a regional groundwater flow system). Elementary patterns typical for hypogenic caves are network mazes, spongework mazes, irregular chambers and isolated passages or crude passage clusters. They often combine to form composite patterns and complex 3- D structures. Hypogenic caves are identified in various geological and tectonic settings, and in various lithologies. Despite these variations, resultant caves demonstrate a remarkable similarity in cave patterns and meso-morphology, which strongly suggests that the hydrogeologic settings were broadly identical in their formation. Presence of the characteristic morphologic suites of rising flow with buoyancy components is one of the most decisive criteria for identifying hypogenic speleogenesis, which is much more widespread than was previously presumed. Hypogenic caves include many of the largest, by integrated length and by volume, documented caves in the world.

The refined conceptual framework of hypogenic speleogenesis has broad implications in applied fields and promises to create a greater demand for karst and cave expertise by practicing hydrogeology, geological engineering, economic geology, and mineral resource industries. Any generalization of the hydrogeology of karst aquifers, as well as approaches to practical issues and resource prospecting in karst regions, should take into account the different nature and characteristics of hypogenic and epigenic karst systems. Hydraulic properties of karst aquifers, evolved in response to hypogenic speleogenesis, are characteristically different from epigenic karst aquifers. In hypogenic systems, cave porosity is roughly an order of magnitude greater, and areal coverage of caves is five times greater than in epigenic karst systems. Hypogenic speleogenesis commonly results in more isotropic conduit permeability pervasively distributed within highly karstified areas measuring up to several square kilometers. Although being vertically and laterally integrated throughout conduit clusters, hypogenic systems, however, do not transmit flow laterally for considerable distances. Hypogenic speleogenesis can affect regional subsurface fluid flow by greatly enhancing initially available cross- formational permeability structures, providing higher local vertical hydraulic connections between lateral stratiform pathways for groundwater flow, and creating discharge segments of flow systems, the areas of low- fluid potential recognizable at the regional scale. Discharge of artesian karst springs, which are modern outlets of hypogenic karst systems, is often very large and steady, being moderated by the high karstic storage developed in the karstified zones and by the hydraulic capacity of an entire artesian system. Hypogenic speleogenesis plays an important role in conditioning related processes such as hydrothermal mineralization, diagenesis, and hydrocarbon transport and entrapment.

An appreciation of the wide occurrence of hypogenic karst systems, marked specifics in their origin, development and characteristics, and their scientific and practical importance, calls for revisiting and expanding the current predominantly epigenic paradigm of karst and cave science.


Morphogenesis of hypogenic caves, 2009, Klimchouk A. B.

Hypogenic speleogenesis is the formation of solution-enlarged permeability structures by waters ascending to a cave-forming zone from below in leaky confined conditions, where deeper groundwaters in regional or intermediate flow systems interact with shallower and more local groundwater flow systems. This is in contrast to more familiar epigenic speleogenesis which is dominated by shallow groundwater systems receiving recharge from the overlying or immediately adjacent surface. Hypogenic caves are identified in various geological and tectonic settings, formed by different dissolutional mechanisms operating in various lithologies. Despite these variations, resultant caves demonstrate a remarkable similarity in patterns and meso-morphology, which strongly suggests that the hydrogeologic settings were broadly identical in their formation. Hypogenic caves commonly demonstrate a characteristic morphologic suite of cave morphs resulting from rising flow across the cave-forming zone with distinct buoyancy-dissolution components. In addition to hydrogeological criteria (hydrostratigraphic position, recharge-discharge configuration and flow pattern viewed from the perspective of the evolution of a regional groundwater flow system), morphogenetic analysis is the primary tool in identifying hypogenic caves. Cave patterns resulting from ascending transverse speleogenesis are strongly guided by the permeability structure in a cave formation. They are also influenced by the discordance of permeability structure in the adjacent beds and by the overall hydrostratigraphic arrangement. Three-dimensional mazes with multiple storeys, or complex 3-D cave systems are most common, although single isolated chambers, passages or crude clusters of a few intersecting passages may occur where fracturing is scarce and laterally discontinuous. Large rising shafts and collapse sinkholes over large voids, associated with deep hydrothermal systems, are also known. Hypogenic caves include many of the largest, by integrated length and by volume, documented caves in the world. More importantly, hypogenic speleogenesis is much more widespread than it was previously presumed. Growing recognition of hypogenic speleogenesis and improved understanding of its peculiar characteristics has an immense importance to both karst science and applied fields as it promises to answer many questions about karst porosity (especially as deep-seated settings are concerned) which remained poorly addressed within the traditional epigenetic karst paradigm.


HYPOGENE CAVES IN THE APENNINES (ITALY), 2009, Galdenzi S.

In the Apennine Mountains many examples of hypogene caves are known, generally related to present or past rise of sulfidic water that, mixing with oxygenated water of shallow flow systems, causes the sulfuric acid dissolution of limestone. The hypogene caves are generally located in small limestone outcrops covered by rocks of low permeability that in?uence the groundwater flowpaths. Some caves, however, are known also in hydrogeological massifs, where epigenic caves prevail. The hypogene caves show different patterns, ranging from phreatic to pure water table caves. The former prevail when karst evolved below the water table in structures almost completely covered by low permeability units; the latter occur in zones where a fast recharge of freshwater can reach the sulfidic water from the karst surface. The progressive lowering, thinning and removal of the low-permeability covers by non-karstic erosion processes can cause the progressive evolution from phreatic to water table caves. Active speleogenetic processes due to H2 S oxidation can be directly observed in different hydrogeologic settings: in highly permeable aquifers with ready recharge of freshwater (Frasassi caves), in thermal caves, below low permeability cover (Acquasanta Terme), or in marine thermal caves with salt water intrusion (Capo Palinuro).


Results 1 to 11 of 11
You probably didn't submit anything to search for