Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That aquifer stimulation is a type of development that is done in semiconsolidated and completely consolidated formations to alter the formation physically to improve its hydraulic properties [6].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
Engineering challenges in Karst, Stevanović, Zoran; Milanović, Petar
See all featured articles
Featured articles from other Geoscience Journals
Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy), Dimuccio, L.A.; Rodrigues, N.; Larocca, F.; Pratas, J.; Amado, A.M.; Batista de Carvalho, L.A.
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
See all featured articles from other geoscience journals

Search in KarstBase

Your search for hydrothermalism (Keyword) returned 10 results for the whole karstbase:
Morphologie et volution des cavernes et formes superficielles dans les quartzites du Roraima, 1988, Galan C. , Lagarde J.
MORPHOGENESIS OF CAVES AND LANDFORMS IN THE PRECAMBRIAN QUARTZITE OF RORAIMA GROUP (VENEZUELA) - This paper describes caves and landforms developed in the Precambrian quartzite of the Roraima Group (1600-1800 My) in the Gran Sabana of Venezuela (cf. Pouyllau and Seurin, in Karstologia, 1985, n 5). High plateaus (Tepuys) are remnants of old erosional surfaces of Secondary-Tertiary age. The weathering of quartzite is produced in fissures by means of the dissolution of the intergranular siliceous cement. Depressions, fields of blocks and small towers, deep fissures characterise the edges of tepuys. Underground passages could be formed by dissolution, arenisation and piping from the fractures which dissect the tepuys. The part of hydrothermalism in speleogenesis is not proved.

MURUROA ATOLL (FRENCH-POLYNESIA) .1. STRUCTURE AND GEOLOGICAL EVOLUTION, 1992, Buigues D, Gachon A, Guille G,
From a geographical point of view, the atoll of Mururoa belongs to the Tuamotu archipelago. In its largest dimension Mururoa (28 x 10 km) is oriented N080-degrees-E, a direction which is different from that of the other atolls of the Tuamotu, generally oriented parallel to the Pacific plate motion, N130-degrees-E. The atoll of Mururoa is built on a submarine plateau of 130 km long and 30 km wide. The western side of this plateau is 90 km long and N080-degrees-E oriented, the eastern one 40 km long and N095-degrees-E oriented. Three deep main structures of the atoll are revealed by strong aeromagnetic anomalies elongated and oriented once more N080-degrees-E. They represent ancient riftzones, similar to the present time Hawaiian ones. The most important of them, situated at southern end of the atoll, is the prolongation of the eastern plateau. The principal petrographic facies have been defined from the numerous drill holes bored in the upper 1,100 m. From the base to the top are represented volcanic deposits, a volcano-sedimentary serie of both carbonate and volcanic origin and finally reefal carbonates (limestones and dolomites). The volcanic facies represent successively submarine, transitional and aerial volcanic activity. They are commonly affected by early stage of hydrothermalism, due to lava-sea-water chemical interaction, and are frequently supported by differentiated dykes, occasionally interrupted by reefal limestones. The main geometrical distribution of the facies through the atoll and the radiochronology lead to the following model of formation : during early stages of the atoll building two main separate edifices emerged before joining and forming a single volcano. This double structure was similar to the present time morphology of Tahiti. The volcanic activity ceased 10.6 Ma ago, an age which perfectly suits a hot spot origin, at present located to the south-east of Pitcairn island

Guab As, une grotte dans de la dolomie mgascristalline hydrothermale (Namibie occidentale), 1995, Marais E. , Martini J. , Irish J.
The authors describe a cave in the semi-desert area of the Hakos Mountains, 100km to the southwest of Windhoek, Namibia. The cave is significant due to the very unusual country rock, with which it is associated. It formed by dissolution of the dolomite core of a large quartz vein, which is 800 m long and 200 m wide, developed in mica-schist. The cave consists of a complex succession of large chambers, more or less overlapping each others, with walls generally consisting of quartz. In most instances the dolomite has been completely dissolved or occurs under the floor, concealed by dust and scree. Although the cave developed within a very small volume of carbonate, the total length reaches 695 m and the depth 85 m. The bottom is occu-pied by a pool which is only temporarily filled with water and probably marks the position of a perched water-table. The cave formed in a perched phreatic environment during an undetermined period

Observations sur le karst de Bardas Blancas-Malarge (Andes de Mendoza, Argentine), 1995, Mikkan, R. A.
The karst of Bardas Blancas, situated south of Mendoza province, deve-lops in Jurassic and Cretaceous limes-tones. The continental and semi-arid climate (300 mm/year) is characterized by temperate summers and cold winters. The periglacial processes are actives. The relief presents a semi-karstic morphology: structural landforms ("Schichttreppenkarst" with cuestas) and afew dolines, swallow-holes and pavements. The Los Brujas cave, about 1 000 m long, shows a labyrinthic network (3 siaged levels) with phreatic passages. The impor-tant gypsum speleothems (crusts, flowers) in the lower level and the calcite-opale speleothems indicate an hydrothermal speleogenesis (dissolution by sulfuric acid and gypsum deposit). The actual and active tectogenesis of this region (uphft, hydrothermalism, volcanism) plays an important part in the geomorphological evolution.

Grottes hydrothermales dans le nord-ouest de la Namibie : splogense et implications dans le dveloppement des karsts en climat aride, 1996, Martini J. E. J. , Marais J. C. E.
The authors investigated ten caves in Western Namibia, which is characterised by a semi- to hyper-arid climate. They seem to have formed in the past under hydrothermal conditions, which are evidenced by circular embayments, ceiling alveoles, avens, deposits of dog-tooth calcite and barite. The latter has been observed in one cave only. Fluid inclusions in calcite and barite indicate very low salinity and temperatures generally below + 70? C. It is proposed that the caves formed by mixing of hydrothermal solutions of deep origin with more surficial ground water in the vicinity of karst springs. Such ground water circulation patterns, close to the water-table, are suggested in several cases by the horizontal extension in caves, forming definite levels of passage networks cutting across the country rock stratigraphy. The alveolar avens developed upwards from these horizontal passages and seem to have formed subaerally by water evaporation from warm pools at the bottom, with condensation and corrosion above, against cooler rock. The suggested genetic processes are in agreement with models proposed by other authors. It is suggested that in arid climates, conditions are more favourable for development of this type of deep karst water circulation than under wetter conditions. It could possibly even be the predominant process of speleogenesis in very arid conditions. By extension, this concept - mixing of water of deep origin, not necessarily significantly hydrothermal with surficial ground water - could explain the peculiar nature of most of the Namibian caves. The latter are typically characterised by the development of very large chambers and phreatic networks, but with restricted extension and not forming well integrated systems.

Hypogenic caves in Provence (France). Specific features and sediments, 2002, Audra Philippe, Bigot Jeanyves, Mocochain Ludovic

Two dry caves from French Provence (Adaouste and Champignons caves) were until now considered as "normal" caves having evolved under meteoric water flow conditions. A new approach gives evidence of a hypogenic origin from deep water uprising under artesian conditions. Specific morphologies and sediments associated with this hydrology are discussed.


Hypogenic caves in Provence (France): Specific features and sediments, 2003, Audra Ph, Bigot J. Y, Mocochain L.

Two dry caves from French Provence (Adaouste and Champignons caves) were until now considered as “normal” caves, evolved under meteoric water flow conditions. A new approach gives evidence of a hypogenic origin from deep water uprising under artesian conditions. Specific morphologies and sediments associated with this hydrology are discussed.


MORPHOLOGICAL INDICATORS OF SPELEOGENESIS: HYPOGENIC SPELEOGENS, 2009, Audra P. , Mocochain L. , Bigot J. Y. , Nobecourt J. C.

Hypogenic speleogenesis can be identi?ed at different scales (basinal ?ow patterns at the regional scale, cave patterns at cave system scale, meso- and micromorphology in cave passages). We focus here on small scale features produced by both corrosion and deposition. In the phreatic zone, the corrosion features (speleogens) are a morphologic suite of rising ?ow forms, phreatic chimneys, bubble trails. At the water table are thermo-sulfuric discharge slots, notches with ?at roofs. Above a thermal water table the forms re?ect different types of condensation runoff: wall convection niches, wall niches, ceiling cupolas, ceiling spheres, channels, megascallops, domes, vents, wall partitions, weathered walls, boxwork, hieroglyphs, replacement pockets, corrosion tables, and features made by acid dripping, such as drip tubes, sulfuric karren and cups. Each type of feature is described and linked to its genetic process. Altogether, these features are used to identify the dominant processes of speleogenesis in hypogenic cave systems. Hypogenic caves were recognized early, especially where thermal or sulfuric processes were active (MARTEL, 1935; PRINCIPI, 1931). However SOCQUET (1801) was one of the earliest modern contributors to speleogenetic knowledge, and probably the ?rst to identify the role of sulfuric speleogenesis by condensation-corrosion due to thermal convection. More recent major contributions evidenced the role of sulfuric speleogenesis and hydrothermalism (e.g. DUBLYANSKY, 2000; EGEMEIER, 1981; FORTI, 1996; GALDENZI AND MENICHETTI, 1995; HILL, 1987; PALMER AND PALMER, 1989). However, most of these case-studies were often considered as “exotic”, regarding the “normal” (i.e. epigenic) speleogenesis. Only recently, KLIMCHOUK (2007) provided a global model, allowing the understanding of “hypogenic” speleogenesis and gathering the characteristics of hypogenic caves. Consequently, the number of caves where a hypogenic origin is recognized dramatically increased during the last years. The hypogenic origin can be recognized at the regional scale (deep-seated karst in basins), at the scale of an individual cave system because of distinctive features in its pattern, by studying the morphology of the cave conduits, or at the local scale of wall features made by corrosion processes (i.e. speleogens). Such type of features depict the characteristics of local cave development, and by extension the characteristics of speleogenesis. The description and interpretation of hypogenic speleogens is generally scattered in the literature. The aim of this paper is to gather the most important hypogenic speleogens, considered here as indicators, and used for the identi?cation and characterization of the hypogenic speleogenesis. Our knowledge is based on the compilation of about 350 caves from the literature, and the study of some of the most signi?cant caves (AUDRA, 2007; AUDRA et al., 2002, 2006). In this paper, we focus on the speleogens (i.e. wall- scale corrosion features) as indicators of hypogenic speleogenesis; we exclude here solution feature at larger scale such as conduits and cave systems and depositional features (sediments). Some of the features observed in the sulfuric caves are speci?cally caused by this strong acid. Some features are closely associated with hydrothermalism. Other features that are widespread in hypogene caves are created without sulfuric in?uence. The following typology mainly takes into account the type of runoff. In con?ned settings with slow phreatic ?ow, cave features are common to all types of hypogene processes, whether they are sulfuric or not (i.e. carbonic, hydrothermal…). In uncon?ned settings, condensation-corrosion processes take place above the water table. These aerial processes, enhanced by the oxidation of sul?des by the thermal convections, and by the microbial processes, result in a large variety of cave features. Some features are closely related to speci?c processes. Consequently, they are considered as valuable indicators of the sulfuric speleogenesis.


Hypogenic caves in France. Speleogenesis and morphology of the cave systems, 2010, Audra Ph. , D'antoninebecourt J. C. , Bigot J. Y.

Hypogenic caves develop by recharge from below, not directly influenced by seepage from the overlying land surface. Several processes of speleogenesis are combined, involving CO2 or H2S produced at depth. If the recharge from depth remains uniform, the growth of selected fissures is prevented, giving rise to maze cave systems with an upward development trend, which is defined as “transverse speleogenesis” [Klimchouk, 2003]. Hypogenic caves are much fewer than epigenic caves (i.e. developed downwards by meteoric water with aggressivity derived from soil). In France, as in the rest of the world, hypogenic caves were poorly recognized until recently because of their lower frequency, subsequent epigenic imprint often hiding the true origin, and the absence of a global conceptual model. However, about a hundred of hypogenic caves have been identified recently in France. The extreme diversity of hypogenic cave patterns and features is due to the variety of geological and topographic settings and types of flow. Thermal caves are a sub-set of hypogenic caves. Active thermal caves are few and small (Mas d’En Caraman, Vallon du Salut). Often, thermal in fluences only occur as point thermal in feeders into epigenic caves (Mescla, Estramar). In addition to the higher temperature, they may be characterized by CO2 (Madeleine) or H2S degassing, by warm water flowing in ceiling channels, or by manganese deposits. The Giant Phreatic Shafts locate along regional active fault lines. They combine all characteristics (thermal, CO2, H2S), due to the fast rising of deep water. The Salins Spring has been explored by scuba diving down to –70 m. Such a hyperkarstification is responsible for the development of the deepest phreatic shafts of the world: pozzo del Merro, Italy (-392 m). Inactive hypogenic caves may be recognized by their specific mineralization or by the presence of large calcite spar. Metallic deposits are due to the rising of deep waters that are warm, aggressive, and low in oxidation potential. Mixing with meteoric water generates Mississippi Valley Type (MVT) sulfidic ores. Iron deposits as massive bodies (Lagnes) or onto microbial media (Iboussires, Malacoste) making specific facies, such as “black tubes”, iron flakes, and iron pool fingers. Other frequent minerals are Mn oxides and Pb sulfur. In such low thermal conditions, calcite deposits occur as large spar in geodes or as passage linings. Other inactive hypogenic caves may also be recognized by characteristic patterns, such as mazes. The relatively constant recharge into confined karst aquifers suppresses fissure competition, so they enlarge at similar rates, producing a maze pattern. In horizontal beds, mazes extend centrifugally around the upwelling feeder. The juxtaposition of multiple discrete vertical feeders produces extended horizontal mazes. In gently tilted structures, 2D mazes extend below aquitards, or along bedding or more porous beds (Saint-Sbastien). In thick folded limestone the rising hypogenic flow alternatively follows joints and bedding planes, producing a 3D maze cave in a stair case pattern (Pigette). Isolated chambers are large cupola-like chambers fed by thermal slots. Thermal convection of air in a CO2-rich atmosphere causes condensation-corrosion that quickly produces voids above the water table (Champignons Cave). Sulfuric acid caves with replacement gypsum are produced by H2S degassing in the cave atmosphere. H2S oxidizes to H2SO4, which corrodes the carbonate rock and replaces it with gypsum. The strongest corrosion occurs above the water table, where sulfide degassing and thermal convection produce strong condensation-corrosion. Caves develop head ward from springs and from thermo-sulfuric slots upward (Chevalley-Serpents System). The low-gradient main drains record base level positions and even the slightest stages of water-table lowering (Chat Cave). Hypogenic speleogenesis provides better understanding of the distribution of karst voids responsible for subsidence hazards and the emplacement of minerals and hydrocarbons.


Hypogenic caves in France. Speleogenesis and morphology of the cave systems, 2010, Audra Philippe, D’antoninobecourt Jeanclaude, Bigot Jeanyves

Hypogenic caves develop by recharge from below, not directly influenced by seepage from the over lying land surface. Several processes of speleogenesis are combined, involving CO2 or H2S produced at depth. If the recharge from depth remains uniform, the growth of selected fissures is prevented, giving rise to maze cave systems with an upward development trend, which is defined as “transverse speleogenesis” [Klimchouk, 2003]. Hypogenic caves are much fewer than epigenic caves (i.e. developed downwards by meteoric water with aggressivity derived from soil). In France, as in the rest of the world, hypogenic caves were poorly recognized until recently because of their lower frequency, subsequent epigenic imprint of tenhiding the true origin, and the absence of a global conceptual model. However, about a hundred of hypogenic caves have been identified recently in France. The extreme diversity of hypogenic cave patterns and features is due to the variety of geological and topographic settings and types of flow. Thermal caves are a sub-set of hypogenic caves. Active thermal caves are few and small (Mas d’En Cara man, Vallondu Salut). Often, thermal in fluences only occur as point thermal infeeders into epigenic caves (Mescla, Estra mar). In addition to the higher temperature, they may be characterized by CO2 (Madeleine) or H2S degassing, by warm water flowing in ceiling channels, or by manganese de posits. The Giant Phreatic Shafts locate along regional active faul tlines. They combine all characteristics (thermal, CO2, H2S), due to the fast rising of deep water. The Salins Spring has been explored by scuba diving down to –70 m. Such a hyperkars tification is responsible for the development of the deepest phreatic shafts of the world: pozzo del Merro, Italy (-392 m). Inactive hypogenic caves may be recognized by their specific mineralization or by the presence of large calcite spar. Metallic deposits are due to the rising of deep waters that are warm, aggressive, and low in oxidation potential. Mixing with meteoric water generates Mississippi Valley Type (MVT) sulfidicores. Iron deposits as massive bodies (Lagnes) or ontomicrobial media (Ibous sières, Malacoste) making specific facies, such as “black tubes”, iron flakes, and iron pool fingers. Other frequent minerals are Mn oxides and Pb sulfur. In such low thermal conditions, calcite deposits occur as large spar in geodes or as passage linings. Other inactive hypogenic caves may also be recognized by characteristic patterns, such as mazes. The relatively constant recharge into confined karst aquifers suppres ses fissure competition, so they enlarge at similar rates, producing a maze pattern. In horizontal beds, mazes extend centrifugally around the upwelling feeder. The juxtaposition of multiple discrete vertical feeders produces extended horizontal mazes. In gently tilted structures, 2D mazes extend below aquitards, or along bedding or more porous beds (Saint-Sé bastien). In thick folded limestone the rising hypogenic flow alternatively follows joints and bedding planes, pro ducing a 3D maze cave in a stair case pattern (Pigette). Isolated chambers are large cupola-like chambers fed by thermal slots. Thermal convection of air in a CO2-rich atmosphere causes condensation-corrosion that quickly produces voids above the water table (Champignons Cave). Sulfuric acid caves with replacement gypsum are produced by H2S degassing in the cave atmosphere. H2S oxidizes to H2SO4, which corrodes the carbonate rock and replaces it with gypsum. The strongest corrosion occurs above the water table, where sulfide degassing and thermal convection produce strong condensation-corrosion. Caves develop headward from springs and from thermo-sulfuric slots upward (Chevalley-Serpents System). The low-gradient main drains record base-level positions and even the slightest stages of water-table lowering (Chat Cave). Hypogenic speleogenesis provides better understanding of the distribution of karst voids responsible for subsidence hazards and the emplace ment of minerals and hydrocarbons.


Results 1 to 10 of 10
You probably didn't submit anything to search for