Search in KarstBase
Two dry caves from French Provence (Adaouste and Champignons caves) were until now considered as "normal" caves having evolved under meteoric water flow conditions. A new approach gives evidence of a hypogenic origin from deep water uprising under artesian conditions. Specific morphologies and sediments associated with this hydrology are discussed.
Two dry caves from French Provence (Adaouste and Champignons caves) were until now considered as “normal” caves, evolved under meteoric water flow conditions. A new approach gives evidence of a hypogenic origin from deep water uprising under artesian conditions. Specific morphologies and sediments associated with this hydrology are discussed.
Hypogenic speleogenesis can be identi?ed at different scales (basinal ?ow patterns at the regional scale, cave patterns at cave system scale, meso- and micromorphology in cave passages). We focus here on small scale features produced by both corrosion and deposition. In the phreatic zone, the corrosion features (speleogens) are a morphologic suite of rising ?ow forms, phreatic chimneys, bubble trails. At the water table are thermo-sulfuric discharge slots, notches with ?at roofs. Above a thermal water table the forms re?ect different types of condensation runoff: wall convection niches, wall niches, ceiling cupolas, ceiling spheres, channels, megascallops, domes, vents, wall partitions, weathered walls, boxwork, hieroglyphs, replacement pockets, corrosion tables, and features made by acid dripping, such as drip tubes, sulfuric karren and cups. Each type of feature is described and linked to its genetic process. Altogether, these features are used to identify the dominant processes of speleogenesis in hypogenic cave systems. Hypogenic caves were recognized early, especially where thermal or sulfuric processes were active (MARTEL, 1935; PRINCIPI, 1931). However SOCQUET (1801) was one of the earliest modern contributors to speleogenetic knowledge, and probably the ?rst to identify the role of sulfuric speleogenesis by condensation-corrosion due to thermal convection. More recent major contributions evidenced the role of sulfuric speleogenesis and hydrothermalism (e.g. DUBLYANSKY, 2000; EGEMEIER, 1981; FORTI, 1996; GALDENZI AND MENICHETTI, 1995; HILL, 1987; PALMER AND PALMER, 1989). However, most of these case-studies were often considered as “exotic”, regarding the “normal” (i.e. epigenic) speleogenesis. Only recently, KLIMCHOUK (2007) provided a global model, allowing the understanding of “hypogenic” speleogenesis and gathering the characteristics of hypogenic caves. Consequently, the number of caves where a hypogenic origin is recognized dramatically increased during the last years. The hypogenic origin can be recognized at the regional scale (deep-seated karst in basins), at the scale of an individual cave system because of distinctive features in its pattern, by studying the morphology of the cave conduits, or at the local scale of wall features made by corrosion processes (i.e. speleogens). Such type of features depict the characteristics of local cave development, and by extension the characteristics of speleogenesis. The description and interpretation of hypogenic speleogens is generally scattered in the literature. The aim of this paper is to gather the most important hypogenic speleogens, considered here as indicators, and used for the identi?cation and characterization of the hypogenic speleogenesis. Our knowledge is based on the compilation of about 350 caves from the literature, and the study of some of the most signi?cant caves (AUDRA, 2007; AUDRA et al., 2002, 2006). In this paper, we focus on the speleogens (i.e. wall- scale corrosion features) as indicators of hypogenic speleogenesis; we exclude here solution feature at larger scale such as conduits and cave systems and depositional features (sediments). Some of the features observed in the sulfuric caves are speci?cally caused by this strong acid. Some features are closely associated with hydrothermalism. Other features that are widespread in hypogene caves are created without sulfuric in?uence. The following typology mainly takes into account the type of runoff. In con?ned settings with slow phreatic ?ow, cave features are common to all types of hypogene processes, whether they are sulfuric or not (i.e. carbonic, hydrothermal…). In uncon?ned settings, condensation-corrosion processes take place above the water table. These aerial processes, enhanced by the oxidation of sul?des by the thermal convections, and by the microbial processes, result in a large variety of cave features. Some features are closely related to speci?c processes. Consequently, they are considered as valuable indicators of the sulfuric speleogenesis.
Hypogenic caves develop by recharge from below, not directly influenced by seepage from the overlying land surface. Several processes of speleogenesis are combined, involving CO2 or H2S produced at depth. If the recharge from depth remains uniform, the growth of selected fissures is prevented, giving rise to maze cave systems with an upward development trend, which is defined as “transverse speleogenesis” [Klimchouk, 2003]. Hypogenic caves are much fewer than epigenic caves (i.e. developed downwards by meteoric water with aggressivity derived from soil). In France, as in the rest of the world, hypogenic caves were poorly recognized until recently because of their lower frequency, subsequent epigenic imprint often hiding the true origin, and the absence of a global conceptual model. However, about a hundred of hypogenic caves have been identified recently in France. The extreme diversity of hypogenic cave patterns and features is due to the variety of geological and topographic settings and types of flow. Thermal caves are a sub-set of hypogenic caves. Active thermal caves are few and small (Mas d’En Caraman, Vallon du Salut). Often, thermal in fluences only occur as point thermal in feeders into epigenic caves (Mescla, Estramar). In addition to the higher temperature, they may be characterized by CO2 (Madeleine) or H2S degassing, by warm water flowing in ceiling channels, or by manganese deposits. The Giant Phreatic Shafts locate along regional active fault lines. They combine all characteristics (thermal, CO2, H2S), due to the fast rising of deep water. The Salins Spring has been explored by scuba diving down to –70 m. Such a hyperkarstification is responsible for the development of the deepest phreatic shafts of the world: pozzo del Merro, Italy (-392 m). Inactive hypogenic caves may be recognized by their specific mineralization or by the presence of large calcite spar. Metallic deposits are due to the rising of deep waters that are warm, aggressive, and low in oxidation potential. Mixing with meteoric water generates Mississippi Valley Type (MVT) sulfidic ores. Iron deposits as massive bodies (Lagnes) or onto microbial media (Iboussières, Malacoste) making specific facies, such as “black tubes”, iron flakes, and iron pool fingers. Other frequent minerals are Mn oxides and Pb sulfur. In such low thermal conditions, calcite deposits occur as large spar in geodes or as passage linings. Other inactive hypogenic caves may also be recognized by characteristic patterns, such as mazes. The relatively constant recharge into confined karst aquifers suppresses fissure competition, so they enlarge at similar rates, producing a maze pattern. In horizontal beds, mazes extend centrifugally around the upwelling feeder. The juxtaposition of multiple discrete vertical feeders produces extended horizontal mazes. In gently tilted structures, 2D mazes extend below aquitards, or along bedding or more porous beds (Saint-Sébastien). In thick folded limestone the rising hypogenic flow alternatively follows joints and bedding planes, producing a 3D maze cave in a stair case pattern (Pigette). Isolated chambers are large cupola-like chambers fed by thermal slots. Thermal convection of air in a CO2-rich atmosphere causes condensation-corrosion that quickly produces voids above the water table (Champignons Cave). Sulfuric acid caves with replacement gypsum are produced by H2S degassing in the cave atmosphere. H2S oxidizes to H2SO4, which corrodes the carbonate rock and replaces it with gypsum. The strongest corrosion occurs above the water table, where sulfide degassing and thermal convection produce strong condensation-corrosion. Caves develop head ward from springs and from thermo-sulfuric slots upward (Chevalley-Serpents System). The low-gradient main drains record base level positions and even the slightest stages of water-table lowering (Chat Cave). Hypogenic speleogenesis provides better understanding of the distribution of karst voids responsible for subsidence hazards and the emplacement of minerals and hydrocarbons.
Hypogenic caves develop by recharge from below, not directly influenced by seepage from the over lying land surface. Several processes of speleogenesis are combined, involving CO2 or H2S produced at depth. If the recharge from depth remains uniform, the growth of selected fissures is prevented, giving rise to maze cave systems with an upward development trend, which is defined as “transverse speleogenesis” [Klimchouk, 2003]. Hypogenic caves are much fewer than epigenic caves (i.e. developed downwards by meteoric water with aggressivity derived from soil). In France, as in the rest of the world, hypogenic caves were poorly recognized until recently because of their lower frequency, subsequent epigenic imprint of tenhiding the true origin, and the absence of a global conceptual model. However, about a hundred of hypogenic caves have been identified recently in France. The extreme diversity of hypogenic cave patterns and features is due to the variety of geological and topographic settings and types of flow. Thermal caves are a sub-set of hypogenic caves. Active thermal caves are few and small (Mas d’En Cara man, Vallondu Salut). Often, thermal in fluences only occur as point thermal infeeders into epigenic caves (Mescla, Estra mar). In addition to the higher temperature, they may be characterized by CO2 (Madeleine) or H2S degassing, by warm water flowing in ceiling channels, or by manganese de posits. The Giant Phreatic Shafts locate along regional active faul tlines. They combine all characteristics (thermal, CO2, H2S), due to the fast rising of deep water. The Salins Spring has been explored by scuba diving down to –70 m. Such a hyperkars tification is responsible for the development of the deepest phreatic shafts of the world: pozzo del Merro, Italy (-392 m). Inactive hypogenic caves may be recognized by their specific mineralization or by the presence of large calcite spar. Metallic deposits are due to the rising of deep waters that are warm, aggressive, and low in oxidation potential. Mixing with meteoric water generates Mississippi Valley Type (MVT) sulfidicores. Iron deposits as massive bodies (Lagnes) or ontomicrobial media (Ibous sières, Malacoste) making specific facies, such as “black tubes”, iron flakes, and iron pool fingers. Other frequent minerals are Mn oxides and Pb sulfur. In such low thermal conditions, calcite deposits occur as large spar in geodes or as passage linings. Other inactive hypogenic caves may also be recognized by characteristic patterns, such as mazes. The relatively constant recharge into confined karst aquifers suppres ses fissure competition, so they enlarge at similar rates, producing a maze pattern. In horizontal beds, mazes extend centrifugally around the upwelling feeder. The juxtaposition of multiple discrete vertical feeders produces extended horizontal mazes. In gently tilted structures, 2D mazes extend below aquitards, or along bedding or more porous beds (Saint-Sé bastien). In thick folded limestone the rising hypogenic flow alternatively follows joints and bedding planes, pro ducing a 3D maze cave in a stair case pattern (Pigette). Isolated chambers are large cupola-like chambers fed by thermal slots. Thermal convection of air in a CO2-rich atmosphere causes condensation-corrosion that quickly produces voids above the water table (Champignons Cave). Sulfuric acid caves with replacement gypsum are produced by H2S degassing in the cave atmosphere. H2S oxidizes to H2SO4, which corrodes the carbonate rock and replaces it with gypsum. The strongest corrosion occurs above the water table, where sulfide degassing and thermal convection produce strong condensation-corrosion. Caves develop headward from springs and from thermo-sulfuric slots upward (Chevalley-Serpents System). The low-gradient main drains record base-level positions and even the slightest stages of water-table lowering (Chat Cave). Hypogenic speleogenesis provides better understanding of the distribution of karst voids responsible for subsidence hazards and the emplace ment of minerals and hydrocarbons.