Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That unconfined is a condition in which the upper surface of the zone of saturation forms a water table under atmospheric pressure [22].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
Engineering challenges in Karst, Stevanović, Zoran; Milanović, Petar
See all featured articles
Featured articles from other Geoscience Journals
Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy), Dimuccio, L.A.; Rodrigues, N.; Larocca, F.; Pratas, J.; Amado, A.M.; Batista de Carvalho, L.A.
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
See all featured articles from other geoscience journals

Search in KarstBase

Your search for hypogene caves (Keyword) returned 47 results for the whole karstbase:
Showing 1 to 15 of 47
Age and Origin of Carlsbad Cavern and Related Caves from 40Ar/39Ar of Alunite., 1998, Polyak V. J. , Mcintosh W. C. , Given N. , Provencio P.
40Ar/39Ar dating of fine-grained alunite that formed during cave genesis provides ages of formation for the Big Room level of Carlsbad Cavern [4.0 to 3.9 million years ago (Ma)], the upper level of Lechuguilla Cave (6.0 to 5.7 Ma), and three other hypogene caves (11.3 to 6.0 Ma) in the Guadalupe Mountains of New Mexico. Alunite ages increase and are strongly correlative with cave elevations, which indicates an 1100-meter decline in the water table, apparently related to tectonic uplift and tilting, from 11.3 Ma to the present. 40Ar/39Ar dating studies of the hypogene caves have the potential to help resolve late Cenozoic climatic, speleologic, and tectonic questions.

The initiation of hypogene caves in fractured limestone by rising thermal water: investigation of a parallel series of competing fractures, 1999, Dumont K. A. , Rajaram H. , Budd D. A.
Integrated cave systems can either form at or near the surface of the earth (epigenic) or at some depth below the earth's surface (hypogenic)For caves that form in fractured limestone, the two most common types of cave-system morphologies are branchwork and mazeworkBranchwork caves are composed of tributaries that coalesce in the downstream direction, similar to surface streamsMazework caves exhibit two or more sets of parallel passages intersecting in a grid-like patternThe majority of epigenic caves exhibit branchwork morphologies, which represent the dominance of individual flow pathsIn contrast, mazework caves develop when dissolution occurs along numerous flow pathsWhereas most epigenic caves are related to surficial meteoric flow systems, some mazework caves are thought to have formed in hypogene environments where rising thermal water cools in response to the geothermal gradientOur objective is to examine the fundamental cause for the difference in morphology between epigenic and thermal hypogenic cave systems using numerical modelsIn particular, we are examining the competition between different flow paths in fractured limestone undergoing dissolutional enlargementAs noted in previous numerical studies, epigenic systems are characterized by the dominance of a single flow path, which is consistent with the structure of epigenic cavesSo, in order to explain the structure of maze caves, one has to explain why no single flow path attains dominanceThe retrograde solubility of calcite coupled with heat transfer from the fluid to the rock is hypothesized to provide the mechanism by which dissolutional power is distributed among all competing flow pathsNumerical models of fluid flow, heat transfer, and calcite dissolution chemistry are integrated to develop a model of hypogene cave initiation in fractured limestoneFlow is assumed to occur in the presence of a spatially variable rock temperature field that is constant through timePreliminary numerical modeling results for a system of parallel fractures demonstrate the differences in the nature of competition between flow paths in epigenic (constant temperature) and hypogenic systems (flow in the presence of a negative thermal gradient)Differences in results using various kinetic models for calcite dissolution are also presentedThe role of aperture variation and distribution in a parallel set of fractures is also examined

Epigene and Hypogene Gypsum Karst Manifestations of the Castile Formation: Eddy County, New Mexico and Culberson County, Texas, USA., 2008, Stafford K. , Nance R. , Rosaleslagarde L. And Boston P. J.
Permian evaporites of the Castile Formation crop out over ~1,800 km2 in the western Delaware Basin (Eddy County, New Mexico and Culberson County, Texas, USA) with abundant and diverse karst manifestations. Epigene karst occurs as well-developed karren on exposed bedrock, while sinkholes dominate the erosional landscape, including both solutional and collapse forms. Sinkhole analyses suggest that more than half of all sinks are the result of upward stoping of subsurface voids, while many solutional sinks are commonly the result of overprinting of collapsed forms. Epigene caves are laterally limited with rapid aperture decreases away from insurgence, with passages developed along fractures and anticline fold axes. Hypogene karst occurs as diverse manifestations, forming the deepest and longest caves within the region as well as abundant zones of brecciation. Hypogene caves exhibit a wide range of morphologies from complex maze and anastomotic patterns to simple, steeply dipping patterns, but all hypogene caves exhibit morphologic features (i.e. risers, outlet cupolas and half-tubes) that provide a definitive suite of evidence of dissolution within a mixed convection (forced and free convection) hydrologic system. Extensive blanket breccias, abundant breccia pipes and numerous occurrences of calcitized evaporites indicate widespread hypogene speleogenesis throughout the entire Castile Formation. Although most cave and karst development within the Castile outcrop region appears to have hypogene origins, epigene processes are actively overprinting features, creating a complex speleogenetic evolution within the Castile Formation.

HYPOGENE KARST AND SULFATE DIAGENESIS OF THE DELAWARE BASIN: SOUTHEASTERN NEW MEXICO AND FAR WEST TEXAS, PhD Thesis , 2008, Stafford, Kevin Wayne

Hypogene speleogenesis is widespread throughout the Delaware Basin region as evidenced by intrastratal dissolution, hypogenic caves and suites of diagenetic minerals. The world famous carbonate caves of the Capitan reef facies of the Guadalupe Mountains have long been associated with sulfuric acid processes and recently have been associated with semi-confined, hypogene dissolution. However, evaporite karst within Permian backreef and basin-filling facies has been traditionally associated with surficial, epigene processes. On the eastern edge of the Delaware Basin cavernous porosity associated with oil reservoirs in Permian carbonates have been attributed to eogenetic karst processes.
Interbedded (evaporite / carbonate), backreef facies within the mid-Permian Seven Rivers Formation exhibit characteristics of hypogene karst associated with semi-confined dissolution controlled by the eastward migration and entrenchment of the Pecos River. Coffee Cave is a good example of hypogene dissolution, forming a multi-storey, rectilinear maze with abundant distinctive morphologic feature suites (i.e. risers, channels and cupolas) indicative of hypogene speleogenesis. Other caves within the Seven Rivers and Rustler Formations show similar patterns, although often less well developed.
Within the Delaware Basin, Castile Formation evaporites have been extensively modified by hypogene processes. Field mapping coupled with GIS analyses clearly shows that karst development and evaporite calcitization are highly clustered throughout the outcrop area. Individual caves commonly exhibit complex morphologies, including complete suites of morphologic features indicative of intrastratal dissolution. Clusters of hypogene caves are commonly associated with clusters of evaporite calcitization and often occurrences of secondary selenite bodies, suggesting all three are genetically related. Brecciated cores and associated native sulfur deposits indicate that calcitized evaporites are the result of semi-confined sulfate reduction in the presence of ascending hydrocarbons. Hypogene caves are currently being overprinted by epigene processes as surface denudation results in breaching of previously confined solutional conduits. However, calcitized evaporites stand as resistant masses attesting to the widespread importance of hypogene processes within the Castile Formation.
On the southern end of the Central Basin Platform, the spatial distribution of cavernous porosity, secondary mineralization and abundant karst fabrics within the Yates Field carbonate strata provide convincing evidence that karst porosity, at least locally, within the San Andres and overlying Permian strata is the result of hypogene speleogenesis. Porosity development appears to have been enhanced by high geothermal gradients and the addition of sulfuric acid-rich fluids, reminiscent of the same processes that have been proposed for the extensive carbonate caves of the Guadalupe Mountains.
Recognition of the widespread occurrence of hypogene speleogenesis throughout the Delaware Basin region indicates that the regional diagenetic evolution has been significantly affected by confined fluid migration, including not only the development of porosity but also the emplacement of many secondary mineral deposits. Therefore, future natural resource management plans must consider the nature of hypogene karst in site evaluations throughout the region in order to better predict geohazards, potential groundwater contamination and characterize mineral resources.


Hypogene calcitization: Evaporite diagenesis in the western Delaware Basin, 2008, Stafford Kevin W. , Ulmerscholle Dana, Rosaleslagarde Laura

Evaporite calcitization within the Castile Formation of the Delaware Basin is more widespread and diverse than originally recognized. Coupled field and GIS studies have identified more than 1000 individual occurrences of calcitization within the Castile Formation outcrop area, which includes both calcitized masses (limestone buttes) and laterally extensive calcitized horizons (limestone sheets). Both limestone buttes and sheets commonly contain a central brecciated zone that we attribute to hypogene dissolution. Lithologic fabric of calcitized zones ranges from little alteration of original varved laminae to fabries showing extensive laminae distortion as well as extensive vuggy and open cavernous porosity. Calcitization is most abundant in the western portion of the Castile outcrop region where surface denudation has been greatest. Calcitization often forms linear trends, indicating fluid migration along fractures, but also occurs as dense clusters indicating focused, ascending, hydrocarbon-rich fluids. Native sulfur, secondary tabular gypsum (i.e. selenite) and hypogene caves are commonly associated with clusters of calcitization. This assemblage suggests that calcium sulfate diagenesis within the Castile Formation is dominated by hypogene speleogenesis.


CAVE TURBIDITES, 2008, Osborne, R. A. L.

Turbidites are uncommon in caves, but are more common as palaeokarst deposits. Marine carbonate turbidites, called caymanites, are the most common cave and palaeokarst turbidites, but marine non-carbonate turbidites, freshwater carbonate turbidites and freshwater non-carbonate turbidites are also deposited in caves and preserved in palaeokarst sequences. One of the most complex sequences of cave turbidites occurs in the Wellington Caves Phosphate Mine in Australia. Cave turbidites form in ponded water in caves and may be triggered by floods and high intensity rain events. While caymanites are most likely to form during marine transgressions, they can be emplaced by tsunami. Freshwater cave turbidites are most likely to form in flooded hypogene caves located in the seasonally wet tropics and in areas with irregular high intensity rainfall events.


Epigene and Hypogene Gypsum Karst Manifestations of the Castile Formation: Eddy County, New Mexico and Culberson County, Texas, USA., 2008, Stafford K. , Nance R. , Rosaleslagarde L. , Boston P. J.

Permian evaporites of the Castile Formation crop out over ~1,800 km2 in the western Delaware Basin (Eddy County, New Mexico and Culberson County, Texas, USA) with abundant and diverse karst manifestations. Epigene karst occurs as well-developed karren on exposed bedrock, while sinkholes dominate the erosional landscape, including both solutional and collapse forms. Sinkhole analyses suggest that more than half of all sinks are the result of upward stoping of subsurface voids, while many solutional sinks are commonly the result of overprinting of collapsed forms. Epigene caves are laterally limited with rapid aperture decreases away from insurgence, with passages developed along fractures and anticline fold axes. Hypogene karst occurs as diverse manifestations, forming the deepest and longest caves within the region as well as abundant zones of brecciation. Hypogene caves exhibit a wide range of morphologies from complex maze and anastomotic patterns to simple, steeply dipping patterns, but all hypogene caves exhibit morphologic features (i.e. risers, outlet cupolas and half-tubes) that provide a definitive suite of evidence of dissolution within a mixed convection (forced and free convection) hydrologic system. Extensive blanket breccias, abundant breccia pipes and numerous occurrences of calcitized evaporites indicate widespread hypogene speleogenesis throughout the entire Castile Formation. Although most cave and karst development within the Castile outcrop region appears to have hypogene origins, epigene processes are actively overprinting features, creating a complex speleogenetic evolution within the Castile Formation.


MORPHOLOGICAL INDICATORS OF SPELEOGENESIS: HYPOGENIC SPELEOGENS, 2009, Audra P. , Mocochain L. , Bigot J. Y. , Nobecourt J. C.

Hypogenic speleogenesis can be identi?ed at different scales (basinal ?ow patterns at the regional scale, cave patterns at cave system scale, meso- and micromorphology in cave passages). We focus here on small scale features produced by both corrosion and deposition. In the phreatic zone, the corrosion features (speleogens) are a morphologic suite of rising ?ow forms, phreatic chimneys, bubble trails. At the water table are thermo-sulfuric discharge slots, notches with ?at roofs. Above a thermal water table the forms re?ect different types of condensation runoff: wall convection niches, wall niches, ceiling cupolas, ceiling spheres, channels, megascallops, domes, vents, wall partitions, weathered walls, boxwork, hieroglyphs, replacement pockets, corrosion tables, and features made by acid dripping, such as drip tubes, sulfuric karren and cups. Each type of feature is described and linked to its genetic process. Altogether, these features are used to identify the dominant processes of speleogenesis in hypogenic cave systems. Hypogenic caves were recognized early, especially where thermal or sulfuric processes were active (MARTEL, 1935; PRINCIPI, 1931). However SOCQUET (1801) was one of the earliest modern contributors to speleogenetic knowledge, and probably the ?rst to identify the role of sulfuric speleogenesis by condensation-corrosion due to thermal convection. More recent major contributions evidenced the role of sulfuric speleogenesis and hydrothermalism (e.g. DUBLYANSKY, 2000; EGEMEIER, 1981; FORTI, 1996; GALDENZI AND MENICHETTI, 1995; HILL, 1987; PALMER AND PALMER, 1989). However, most of these case-studies were often considered as “exotic”, regarding the “normal” (i.e. epigenic) speleogenesis. Only recently, KLIMCHOUK (2007) provided a global model, allowing the understanding of “hypogenic” speleogenesis and gathering the characteristics of hypogenic caves. Consequently, the number of caves where a hypogenic origin is recognized dramatically increased during the last years. The hypogenic origin can be recognized at the regional scale (deep-seated karst in basins), at the scale of an individual cave system because of distinctive features in its pattern, by studying the morphology of the cave conduits, or at the local scale of wall features made by corrosion processes (i.e. speleogens). Such type of features depict the characteristics of local cave development, and by extension the characteristics of speleogenesis. The description and interpretation of hypogenic speleogens is generally scattered in the literature. The aim of this paper is to gather the most important hypogenic speleogens, considered here as indicators, and used for the identi?cation and characterization of the hypogenic speleogenesis. Our knowledge is based on the compilation of about 350 caves from the literature, and the study of some of the most signi?cant caves (AUDRA, 2007; AUDRA et al., 2002, 2006). In this paper, we focus on the speleogens (i.e. wall- scale corrosion features) as indicators of hypogenic speleogenesis; we exclude here solution feature at larger scale such as conduits and cave systems and depositional features (sediments). Some of the features observed in the sulfuric caves are speci?cally caused by this strong acid. Some features are closely associated with hydrothermalism. Other features that are widespread in hypogene caves are created without sulfuric in?uence. The following typology mainly takes into account the type of runoff. In con?ned settings with slow phreatic ?ow, cave features are common to all types of hypogene processes, whether they are sulfuric or not (i.e. carbonic, hydrothermal…). In uncon?ned settings, condensation-corrosion processes take place above the water table. These aerial processes, enhanced by the oxidation of sul?des by the thermal convections, and by the microbial processes, result in a large variety of cave features. Some features are closely related to speci?c processes. Consequently, they are considered as valuable indicators of the sulfuric speleogenesis.


Hypogene Speleogenesis and Karst Hydrogeology of Artesian Basins, 2009,

The volume contains papers presented during the International Conference held May 13 through 17, 2009 in Chernivtsi, Ukraine.

The PDF file contains cover, title and contents pages. Download and save this file to your disk and use hyperlinked titles of papers in the content list to download PDF files of individual papers. 

CONTENTS

PRINCIPAL FEATURES OF HYPOGENE SPELEOGENESIS
Alexander Klimchouk

HYPOGENE CAVE PATTERNS
Philippe Audra, Ludovic Mocochain, Jean-Yves Bigot, and Jean-Claude Nobécourt

MORPHOLOGICAL INDICATORS OF SPELEOGENESIS: HYPOGENIC SPELEOGENS
Philippe Audra, Ludovic Mocochain, Jean-Yves Bigot, and Jean-Claude Nobécourt

HYPOGENE CAVES IN DEFORMED (FOLD BELT) STRATA: OBSERVATIONS FROM EASTERN AUSTRALIA AND CENTRAL EUROPE
R.A.L. Osborne

IDENTIFYING PALEO WATER-ROCK INTERACTION DURING HYDROTHERMAL KARSTIFICATION: A STABLE ISOTOPE APPROACH
Yuri Dublyansky and Christoph Spötl

MICROORGANISMS AS SPELEOGENETIC AGENTS: GEOCHEMICAL DIVERSITY BUT GEOMICROBIAL UNITY
P.J.Boston, M.N. Spilde, D.E. Northup, M.D. Curry, L.A. Melim, and L. Rosales-Lagarde

SIDERITE WEATHERING AS A REACTION CAUSING HYPOGENE SPELEOGENESIS: THE EXAMPLE OF THE IBERG/HARZ/GERMANY Stephan Kempe

SIMULATING THE DEVELOPMENT OF SOLUTION CONDUITS IN HYPOGENE SETTINGS
C. Rehrl, S. Birk, and A.B. Klimchouk

EVOLUTION OF CAVES IN POROUS LIMESTONE BY MIXING CORROSION: A MODEL APPROACH
Wolfgang Dreybrodt, Douchko Romanov, and Georg Kaufmann

SPELEOGENESIS OF MEDITERRANEAN KARSTS: A MODELLING APPROACH BASED ON REALISTIC FRACTURE NETWORKS
Antoine Lafare, Hervé Jourde, Véronique Leonardi, Séverin Pistre, and Nathalie Dörfliger

GIANT COLLAPSE STRUCTURES FORMED BY HYPOGENIC KARSTIFICATION: THE OBRUKS OF THE CENTRAL ANATOLIA, TURKEY
C. Serdar Bayari, N. Nur Ozyurt, and Emrah Pekkans

ON THE ROLE OF HYPOGENE SPELEOGENESIS IN SHAPING THE COASTAL ENDOKARST OF SOUTHERN MALLORCA (WESTERN MEDITERRANEAN)
Joaquín Ginés, Angel Ginés, Joan J. Fornós, Antoni Merino and Francesc Gràcia

HYPOGENE CAVES IN THE APENNINES (ITALY)
Sandro Galdenzi

STEGBACHGRABEN, A MINERALIZED HYPOGENE CAVE IN THE GROSSARL VALLEY, AUSTRIA
Yuri Dublyansky, Christoph Spötl, and Christoph Steinbauer

HYPOGENE CAVES IN AUSTRIA
Lukas Plan, Christoph Spötl, Rudolf Pavuza, Yuri Dublyansky

KRAUSHÖHLE: THE FIRST SULPHURIC ACID CAVE IN THE EASTERN ALPS (STYRIA, AUSTRIA) (Abstract only)
Lukas Plan, Jo De Waele, Philippe Audra, Antonio Rossi, and Christoph Spötl

HYDROTHERMAL ORIGIN OF ZADLAŠKA JAMA, AN ANCIENT ALPINE CAVE IN THE JULIAN ALPS, SLOVENIA
Martin Knez and Tadej Slabe

ACTIVE HYPOGENE SPELEOGENESIS AND THE GROUNDWATER SYSTEMS AROUND THE EDGES OF ANTICLINAL RIDGES
Amos Frumkin

SEISMIC-SAG STRUCTURAL SYSTEMS IN TERTIARY CARBONATE ROCKS BENEATH SOUTHEASTERN FLORIDA, USA: EVIDENCE FOR HYPOGENIC SPELEOGENESIS?
Kevin J. Cunningham and Cameron Walker

HYPOGENE SPELEOGENESIS IN THE PIEDMONT CRIMEA RANGE
A.B. Klimchouk, E.I. Tymokhina and G.N. Amelichev

STYLES OF HYPOGENE CAVE DEVELOPMENT IN ANCIENT CARBONATE AREAS OVERLYING NON-PERMEABLE ROCKS IN BRAZIL AND THE INFLUENCE OF COMPETING MECHANISMS AND LATER MODIFYING PROCESSES
Augusto S. Auler

MORPHOLOGY AND GENESIS OF THE MAIN ORE BODY AT NANISIVIK ZINC/LEAD MINE, BAFFIN ISLAND, CANADA: AN OUTSTANDING EXAMPLE OF PARAGENETIC DISSOLUTION OF CARBONATE BEDROCKS WITH PENE-CONTEMPORANEOUS PRECIPITATION OF SULFIDES AND GANGUE MINERALS IN A HYPOGENE SETTING
Derek Ford

THE INFLUENCE OF HYPOGENE AND EPIGENE SPELEOGENESIS IN THE EVOLUTION OF THE VAZANTE KARST MINAS GERAIS STATE, BRAZIL
Cristian Bittencourt, Augusto Sarreiro Auler, José Manoel dos Reis Neto, Vanio de Bessa and Marcus Vinícios Andrade Silva

HYPOGENIC ASCENDING SPELEOGENESIS IN THE KRAKÓW-CZĘSTOCHOWA UPLAND (POLAND) ? EVIDENCE IN CAVE MORPHOLOGY AND SURFACE RELIEF
Andrzej Tyc

EVIDENCE FROM CERNA VALLEY CAVES (SW ROMANIA) FOR SULFURIC ACID SPELEOGENESIS: A MINERALOGICAL AND STABLE ISOTOPE STUDY
Bogdan P. Onac, Jonathan Sumrall, Jonathan Wynn, Tudor Tamas, Veronica Dărmiceanu and Cristina Cizmaş

THE POSSIBILITY OF REVERSE FLOW PIRACY IN CAVES OF THE APPALACHIAN MOUNTAIN BELT (Abstract only)
Ira D. Sasowsky

KARSTOGENESIS AT THE PRUT RIVER VALLEY (WESTERN UKRAINE, PRUT AREA)
Viacheslav Andreychouk and Bogdan Ridush

ZOLOUSHKA CAVE: HYPOGENE SPELEOGENESIS OR REVERSE WATER THROUGHFLOW?
V. Eirzhyk (Abstract only)

EPIGENE AND HYPOGENE CAVES IN THE NEOGENE GYPSUM OF THE PONIDZIE AREA (NIECKA NIDZIAŃSKA REGION), POLAND
Jan Urban, Viacheslav Andreychouk, and Andrzej Kasza

PETRALONA CAVE: MORPHOLOGICAL ANALYSIS AND A NEW PERSPECTIVE ON ITS SPELEOGENESIS
Georgios Lazaridis

HYPOGENE SPELEOGENESIS IN MAINLAND NORWAY AND SVALBARD?
Stein-Erik Lauritzen

VILLA LUZ PARK CAVES: SPELEOGENESIS BASED ON CURRENT STRATIGRAPHIC AND MORPHOLOGIC EVIDENCE (Abstract only)
Laura Rosales-Lagarde, Penelope J. Boston, Andrew Campbell, and Mike Pullin

HYPOGENE KARSTIFICATION IN SAUDI ARABIA (LAYLA LAKE SINKHOLES, AIN HEETH CAVE)
Stephan Kempe, Heiko Dirks, and Ingo Bauer

HYPOGENE KARSTIFICATION IN JORDAN (BERGISH/AL-DAHER CAVE, UWAIYED CAVE, BEER AL-MALABEH SINKHOLE)
Stephan Kempe, Ahmad Al-Malabeh, and Horst-Volker Henschel

ASSESSING THE RELIABILITY OF 2D RESISTIVITY IMAGING TO MAP A DEEP AQUIFER IN CARBONATE ROCKS IN THE IRAQI KURDISTAN REGION
Bakhtiar K. Aziz and Ezzaden N. Baban

FEATURES OF GEOLOGICAL CONDITIONS OF THE ORDINSKAYA UNDERWATER CAVE, FORE-URALS, RUSSIA
Pavel Sivinskih

INIAAIIINOE AEIIAAIIIAI NIAEAIAAIACA AI?II-NEEAA?AOIE IAEANOE CAIAAIIAI EAAEACA
A.A.Aao?ooaa

AEOAEIIIA NO?IAIEA AEA?IAAINOA?U: IIAAEU AA?OEEAEUIIE CIIAEUIINOE
A.I. Eaoaaa

?IEU EA?NOA A OI?IE?IAAIEE NIEAIUO AIA E ?ANNIEIA IEAI?ENEIAI AANNAEIA
Aeaenaia? Eiiiiia, Na?aae Aeaenaaa, e Na?aae Nooia


STYLES OF HYPOGENE CAVE DEVELOPMENT IN ANCIENT CARBONATE AREAS OVERLYING NON-PERMEABLE ROCKS IN BRAZIL AND THE INFLUENCE OF COMPETING MECHANISMS AND LATER MODIFYING PROCESSES, 2009, Augusto S. Auler

A significant proportion of the karst areas in Brazil develop over ancient cratonic or tectonically stable zones overlying Precambrian quartzites or Archaean crystalline basement (granite, gneiss, schist). In such settings, due to the low transmissivity and highly anisotropic nature of the bedrock, major groundwater flow of regional scale tends to be restricted, and diffuse ascending cross-formational flow into the carbonate is limited to a few favourable input zones. Nevertheless, caves displaying hypogene features occur in several areas, although few contain the full suite of speleogenetic forms commonly found in “classic” better studied areas of Europe and North America. Major known hypogene caves in Brazil tend to be located in zones bordering the more stable cratonic areas, such as in Vazante and Toca da Boa Vista karst areas, where fault zones are likely candidates for providing ascending flow paths towards the carbonate. The absence of transmissive beds above the carbonate limits the existence of outflow routes. Brazilian hypogene caves develop in mostly horizontally bedded or gently dipping bedrock and typically do not display the three-dimensional character of many hypogene caves elsewhere. The speleogenetic role of competing mechanisms such as sulphuric acid dissolution due to pyrite oxidation and condensation corrosion tend to overprint original forms as well as produce similar convergent features.


IDENTIFYING PALEO WATER-ROCK INTERACTION DURING HYDROTHERMAL KARSTIFICATION: A STABLE ISOTOPE APPROACH, 2009, Dublyansky Y. , Spotl C.

Haloes of altered oxygen isotope values ranging in size from < 1 m to several km have been reported around hydrothermal ore deposits. We have found that similar alteration zones could be induced by lukewarm to thermal cave-forming waters. A paleo wall in Entrische Kirche cave (Gastein Valley, Austrian Alps) preserved a 5 cm-thick brownish zone behind a thick flowstone. Across this zone the O isotope values gradually increase by 11 ‰, until they reach values characteristic of the unaltered marble. The isotope composition in the alteration zone is very different from that of the ?owstone above but is similar to phreatic calcite spar from hypogene (thermal) karst cavities in surface outcrops in the area. We interpret this isotopic pro?le as re?ection of the water-rock interaction in a low-temperature hydrothermal karst system. Similar alteration pro?les were found around solutional cavities at Hllenstein (Tux Valley, Austrian Alps), lined with hydrothermal calcite. Sigmoid shapes of isotope profiles suggest that the most-altered bedrock was isotopically equilibrated with paleo waters. This allows use of isotope mass-balance calculations to assess the temperature of the paleo waters. Isotope profiles acquired from a number of other hypogene caves in Austria failed to show any isotopic signals of bedrock alteration.


ACTIVE HYPOGENE SPELEOGENESIS AND THE GROUNDWATER SYSTEMSAROUND THE EDGES OF ANTICLINAL RIDGES, 2009, Frumkin A.

It has been recently acknowledged that hypogenic caves are common in limestone terranes (e.g. KLIMCHOUK, 2000; AUDRA et al., 2002, 2007; AULER AND SMART, 2003; FORD AND WILLIAMS, 2007), with an extensive review by KLIMCHOUK (2007). Anticlinal ridges provide large recharge areas through which meteoric water may flow into confined zones around the peripheries during their history of uplift and associated denudation. The spatially varying stratal dips may create preferred flow routes within the confined zone and consequently promote hypogene speleogenesis at the most suitable sites for the water to rise again and discharge. Active speleogenetic sites thus may be found around the edges of anticlinal ridges where the potentiometric levels in the con?ned zone are high enough to promote the rising, transverse ?ow. Further away towards the adjoining synclinal basin, impermeable cover may be too thick to allow rising flow. The preferred sites for speleogenesis may migrate away from the anticlinal axis during the uplift process and associated lowering of groundwater levels. The common occurence of relict isolated hypogene caves in the Judean anticlinorium (FRUMKIN AND FISCHHENDLER, 2005) have led to the discovery of similar caves actively forming today. The Yarkon-Taninim regional aquifer is divided into lower and upper sub-aquifers, of which the lower one becomes (partly) con?ned near the anticlinal axis, while the upper sub- aquifer becomes con?ned at the western foothills. Upward flow is evident at the Ayalon Salinity Anomaly (ASA) where the upper sub-aquifer is still uncon?ned, so that rising water has much larger free space to ?ll in comparison with the nearby confined zone (FRUMKIN AND GVIRTZMAN, 2006). Approaching the watertable, the emerging rising flow can easily travel laterally along the highly permeable karstified zone. The rising ASA water is comparable to artesian springs, which discharge in the zone of lowest head of the upper aquifer. In the case of the ASA, however, the upward ?ow does not reach the open land surface but instead disperses laterally near the watertable. It may thus be considered an “underground delta”. The conceptual model consists of four-segment flow route: (1) rainwater recharge through outcrops on the anticlinal ridge; (2) lateral confined flow down to a depth of ~-700 m; (3) pressurized upward flow through discrete sub-vertical conduits; and (4) multidirectional pervasive flow close to the water table, with restricted output in which the rising water mingles with the ‘normal’ water of the upper aquifer. Maze caves fed by vertical conduits are typical for such an “underground delta”, as they disperse the flow laterally in many similar routes. Dense cave formation is observed to be associated with the upward flow of aggressive water. Within the “underground delta” the aggressiveness is consumed over short distances laterally away from the sub-vertical feeders. Such formation of large voids by dissolution far from the recharge zone implies renewed hydrochemical aggressiveness. The spatial location of the ASA is determined by three conditions that allow upward leakage from the deep sub-aquifer: (1) the location of the westernmost unconfined zone of the upper sub-aquifer, and its association with nearby confined regions; (2) the large upward head gradient; (3) spatial heterogeneities in the vertical permeability that are associated with tectonically disturbed zones.


HYPOGENE CAVES IN THE APENNINES (ITALY), 2009, Galdenzi S.

In the Apennine Mountains many examples of hypogene caves are known, generally related to present or past rise of sulfidic water that, mixing with oxygenated water of shallow flow systems, causes the sulfuric acid dissolution of limestone. The hypogene caves are generally located in small limestone outcrops covered by rocks of low permeability that in?uence the groundwater flowpaths. Some caves, however, are known also in hydrogeological massifs, where epigenic caves prevail. The hypogene caves show different patterns, ranging from phreatic to pure water table caves. The former prevail when karst evolved below the water table in structures almost completely covered by low permeability units; the latter occur in zones where a fast recharge of freshwater can reach the sulfidic water from the karst surface. The progressive lowering, thinning and removal of the low-permeability covers by non-karstic erosion processes can cause the progressive evolution from phreatic to water table caves. Active speleogenetic processes due to H2 S oxidation can be directly observed in different hydrogeologic settings: in highly permeable aquifers with ready recharge of freshwater (Frasassi caves), in thermal caves, below low permeability cover (Acquasanta Terme), or in marine thermal caves with salt water intrusion (Capo Palinuro).


HYPOGENE CAVES IN DEFORMED (FOLD BELT) STRATA: OBSERVATIONS FROM EASTERN AUSTRALIA AND CENTRAL EUROPE, 2009, Osborne R.

While there is a well-established general theory for the mechanism of excavation of hypogene caves in artesian basins, the same cannot be said for hypogene caves in deformed strata. A few active thermal caves, several dormant hypogene caves and many extinct hypogene caves and extinct hypogene sections of complex multiprocess caves are developed in impounded karsts along the whole length of the Tasman Fold Belt System in eastern Australia. The active caves are related to warm springs with temperatures (20°-28°C) only a few degrees above the annual average (17°C) and are often cooler than the external summer temperature. The origins of these waters have not been investigated, but most active, dormant, extinct and suspect ancient hypogene caves occur in close proximity to faults, frequently to large regional faults. If and how water from these faults is transmitted to the propagation planes in the caves is not known. While hypogene speleothems occur in the active and dormant caves, these are absent from the older suspect hypogene caves, some of which have probably been thermally dormant for hundreds of millions of years. The older caves are characterized by cave pattern, the presence of hypogene speleogens and poor relationship with surrounding hydrology. Two processes that are signi?cant in the development of the older complex caves are integration, which leads to formerly separate cavities joining to form larger caves and renovation, which smoothes cave walls, obliterating boxwork, etching and lithologically selective solution.


HYPOGENE CAVES IN AUSTRIA, 2009, Plan L. , Spotl C. , Pavuza R. , Dublyansky Y.

Among the ca. 14,000 registered caves of Austria few have been attributed to hypogene speleogenesis. This paper provides an overview of hypogene caves in Austria. A few dozen examples are known around the Vienna Basin. Some of these caves, such as Eisensteinhhle and Nasser Schacht, display a thermally anomalous microclimate and are associated with thermal springs. Other caves are inactive, but their morphology and deposits are suggestive of a hypogene origin. Preliminary morphologic observations suggest sulfuric speleogenesis for Stephanshhle near Bad Deutsch Altenburg. In the Northern Calcareous Alps, which host the majority of caves of Austria, only very few have previously been identi?ed as hypogene (e.g., Mrchenhhle, Wasserhhle), but the number of such caves is likely to increase in the near future. Also, “normal” (epigenetic) cave systems sometimes show morphological evidence suggestive of a hypogene origin, but conclusive proof is lacking. The only Austrian cave where a sulfuric acid speleogenesis is well documented is Kraushhle. In marbles of the Central Alps lukewarm and thermal springs are present and cavities of likely hypogene origin were encountered during tunnel construction near Lend. In a nearby cave, Entrische Kirche, isotopic evidence of marble alteration by warm paleowaters was recently identi?ed. Extensive calcite deposits are also known from nearby Stegbachgraben, and ongoing isotopic and fluid-inclusion studies strongly suggest hypogene water-rock interaction at lukewarm (<40°C) temperatures there. A few caves in the Southern Calcareous Alps also show morphological evidence of a hypogene origin (e.g. Kozakhhle), which is U/Th-dated to older than ca. 144,000 years. CO2 -rich springs discharge nearby.


Results 1 to 15 of 47
You probably didn't submit anything to search for