Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That rejuvenation is a process that interrupts an active erosional or development cycle and initiates a new cycle. rejuvenation is most commonly achieved in the karst and speleogenesis context by erosional baselevel changes caused by relative uplift (or sea-level fall) or by local water-table changes caused by downcutting of surface valleys intercepting deeper drainage lines [9].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
Engineering challenges in Karst, Stevanović, Zoran; Milanović, Petar
See all featured articles
Featured articles from other Geoscience Journals
Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy), Dimuccio, L.A.; Rodrigues, N.; Larocca, F.; Pratas, J.; Amado, A.M.; Batista de Carvalho, L.A.
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
See all featured articles from other geoscience journals

Search in KarstBase

Your search for hypogenic speleogenesis (Keyword) returned 42 results for the whole karstbase:
Showing 1 to 15 of 42
Hypogene Speleogenesis: Hydrogeological and Morphogenetic Perspective., 2007, Klimchouk A. B.

This book provides an overview of the principal environments, main processes and manifestations of hypogenic speleogenesis, and refines the relevant conceptual framework. It consolidates the notion of hypogenic karst as one of the two major types of karst systems (the other being epigenetic karst). Karst is viewed in the context of regional groundwater flow systems, which provide the systematic transport and distribution mechanisms needed to produce and maintain the disequilibrium conditions necessary for speleogenesis. Hypogenic and epigenic karst systems are regularly associated with different types, patterns and segments of flow systems, characterized by distinct hydrokinetic, chemical and thermal conditions. Epigenic karst systems are predominantly local systems, and/or parts of recharge segments of intermediate and regional systems. Hypogenic karst is associated with discharge regimes of regional or intermediate flow systems.

Various styles of hypogenic caves that were previously considered unrelated, specific either to certain lithologies or chemical mechanisms are shown to share common hydrogeologic genetic backgrounds. In contrast to the currently predominant view of hypogenic speleogenesis as a specific geochemical phenomenon, the broad hydrogeological approach is adopted in this book. Hypogenic speleogenesis is defined with reference to the source of fluid recharge to the cave-forming zone, and type of flow system. It is shown that confined settings are the principal hydrogeologic environment for hypogenic speleogenesis. However, there is a general evolutionary trend for hypogenic karst systems to lose their confinement due to uplift and denudation and due to their own expansion. Confined hypogenic caves may experience substantial modification or be partially or largely overprinted under subsequent unconfined (vadose) stages, either by epigenic processes or continuing unconfined hypogenic processes, especially when H2S dissolution mechanisms are involved.

Hypogenic confined systems evolve to facilitate cross-formational hydraulic communication between common aquifers, or between laterally transmissive beds in heterogeneous soluble formations, across cave-forming zones. The latter originally represented low-permeability, separating units supporting vertical rather than lateral flow. Layered heterogeneity in permeability and breaches in connectivity between different fracture porosity structures across soluble formations are important controls over the spatial organization of evolving ascending hypogenic cave systems. Transverse hydraulic communication across lithological and porosity system boundaries, which commonly coincide with major contrasts in water chemistry, gas composition and temperature, is potent enough to drive various disequilibrium and reaction dissolution mechanisms. Hypogenic speleogenesis may operate in both carbonates and evaporites, but also in some clastic rocks with soluble cement. Its main characteristic is the lack of genetic relationship with groundwater recharge from the overlying or immediately adjacent surface. It may not be manifest at the surface at all, receiving some expression only during later stages of uplift and denudation. In many instances, hypogenic speleogenesis is largely climate- independent.

There is a specific hydrogeologic mechanism inherent in hypogenic transverse speleogenesis (restricted input/output) that suppresses the positive flow-dissolution feedback and speleogenetic competition in an initial flowpath network. This accounts for the development of more pervasive channeling and maze patterns in confined settings where appropriate structural prerequisites exist. As forced-flow regimes in confined settings are commonly sluggish, buoyancy dissolution driven by either solute or thermal density differences is important in hypogenic speleogenesis.

In identifying hypogenic caves, the primary criteria are morphological (patterns and meso-morphology) and hydrogeological (hydrostratigraphic position and recharge/flow pattern viewed from the perspective of the evolution of a regional groundwater flow system). Elementary patterns typical for hypogenic caves are network mazes, spongework mazes, irregular chambers and isolated passages or crude passage clusters. They often combine to form composite patterns and complex 3- D structures. Hypogenic caves are identified in various geological and tectonic settings, and in various lithologies. Despite these variations, resultant caves demonstrate a remarkable similarity in cave patterns and meso-morphology, which strongly suggests that the hydrogeologic settings were broadly identical in their formation. Presence of the characteristic morphologic suites of rising flow with buoyancy components is one of the most decisive criteria for identifying hypogenic speleogenesis, which is much more widespread than was previously presumed. Hypogenic caves include many of the largest, by integrated length and by volume, documented caves in the world.

The refined conceptual framework of hypogenic speleogenesis has broad implications in applied fields and promises to create a greater demand for karst and cave expertise by practicing hydrogeology, geological engineering, economic geology, and mineral resource industries. Any generalization of the hydrogeology of karst aquifers, as well as approaches to practical issues and resource prospecting in karst regions, should take into account the different nature and characteristics of hypogenic and epigenic karst systems. Hydraulic properties of karst aquifers, evolved in response to hypogenic speleogenesis, are characteristically different from epigenic karst aquifers. In hypogenic systems, cave porosity is roughly an order of magnitude greater, and areal coverage of caves is five times greater than in epigenic karst systems. Hypogenic speleogenesis commonly results in more isotropic conduit permeability pervasively distributed within highly karstified areas measuring up to several square kilometers. Although being vertically and laterally integrated throughout conduit clusters, hypogenic systems, however, do not transmit flow laterally for considerable distances. Hypogenic speleogenesis can affect regional subsurface fluid flow by greatly enhancing initially available cross- formational permeability structures, providing higher local vertical hydraulic connections between lateral stratiform pathways for groundwater flow, and creating discharge segments of flow systems, the areas of low- fluid potential recognizable at the regional scale. Discharge of artesian karst springs, which are modern outlets of hypogenic karst systems, is often very large and steady, being moderated by the high karstic storage developed in the karstified zones and by the hydraulic capacity of an entire artesian system. Hypogenic speleogenesis plays an important role in conditioning related processes such as hydrothermal mineralization, diagenesis, and hydrocarbon transport and entrapment.

An appreciation of the wide occurrence of hypogenic karst systems, marked specifics in their origin, development and characteristics, and their scientific and practical importance, calls for revisiting and expanding the current predominantly epigenic paradigm of karst and cave science.


THE RELATIONSHIP BETWEEN THE MINERAL COMPOSITION OF SPELEOTHEMS AND MINERALIZATION OF BRECCIA PIPES: EVIDENCE FROM CORKSCREW CAVE, ARIZONA, USA, 2007, Onac Bogdan P. , Hess John W. , White William B.
Solution-collapse breccia pipes are common features in northwestern Arizona. They were mineralized with uranium, but associated with it are a suite of elements (e.g., As, Mo, V, Ba, Cu, Pb, and Fe) that may form other ore minerals. Breccia bodies are in some cases cut by cave passages, such as at Corkscrew Cave, Arizona, where such structures are exposed along the walls and on the cave ceilings. The abundance of gypsum and barite throughout the cave and their isotopically light 34S value (?11 to ?7) suggest deposition from warm sulfidic solutions that were also responsible, at least in part, for development of the recent cave passages that dissect older paleokarst breccia bodies. The presence of calcite showing depleted 18O values (?11.3 and ?16.9) is considered indicative of a low-temperature hydrothermal episode in the deposition history of cave minerals. Groundwater percolating through the breccia-pipe bodies mobilized and transported ore-related ions into the cave, where they formed a unique assemblage of minerals (i.e., hörnesite, talmessite, carnotite, tyuyamunite, claudetite, and powellite) that mirror breccia-pipe mineralization.

Hypogenic speleogenesis within Seven Rivers Evaporites: Coffee Cave, Eddy County, New Mexico, 2008, Stafford K. W. , Land L. , Klimchouk A.

Coffee Cave, located in the lower Pecos region of southeastern New Mexico, illustrates processes of hypogenic speleogenesis in the middle Permian Seven Rivers Formation. Coffee Cave is a rectilinear gypsum maze cave with at least four stratigraphically-distinct horizons of development. Morphological features throughout the cave provide unequivocal evidence of hypogenic ascending speleogenesis in a confined aquifer system driven by mixed (forced and free) convection. Morphologic features in individual cave levels include a complete suite that defines original rising flow paths, ranging from inlets for hypogenic fluids (feeders) through transitional forms (rising wall channels) to ceiling half-tube flow features and fluid outlets (cupolas and exposed overlying beds). Passage morphology does not support origins based on epigenic processes and lateral development, although the presence of fine-grained sediments in the cave suggests minimal overprinting by backflooding. Feeder distributions show a lateral shift in ascending fluids, with decreasing dissolutional development in upper levels. It is likely that additional hypogenic karst phenomena are present in the vicinity of Coffee Cave because regional hydrologic conditions are optimum for confined speleogenesis, with artesian discharge still active in the region.


Principal features and problems of karst hydrogeology: Speleogenetic approach, 2008, Klimchouk A. B.

The principal problems of karst hydrogeology and its distinctions from “common” hydrogeology are rooted in the facts that porosity and permeability in karst aquifers 1) are characterised by high heterogeneity and anisotropy, 2) are not inherent and static characteristics of an aquifer but form and develop in the process of the dissolution action of flow on the host rocks. Speleogenetic research focuses on deciphering of mechanisms and rates of solution conduits development, in final analysis – on their evolution, i.e. on revealing of nature of extreme heterogeneity and anisotropy of percolation properties and hierarchical organization of permeability.

The paper provides general characterization of karst porosity and permeability and discusses conceptual models of karst aquifers. Karst aquifers have multi-porosity structure, with respective flow components demonstrating different hydrodynamic behaviour and complex interaction. Various methods of determination of percolation properties characterize medium on a certain level, depending on the scale of the tested domain. Conduit permeability can be adequately estimated only in the scale of a basin (karst hydrological system). Validity of hydrogeological modeling decreases from regional to the local scales of a domain. 

Advances in development of speleogenesis theory attained in last decades of the 20 century render large influence on understanding of peculiar features of karst hydrogeology. The paper outlines principal theoretical regularities of speleogenesis, which, as well as respective conduit permeability structures, differ substantially for unconfined and confined hydrogeological environments.


MORPHOLOGICAL INDICATORS OF SPELEOGENESIS: HYPOGENIC SPELEOGENS, 2009, Audra P. , Mocochain L. , Bigot J. Y. , Nobecourt J. C.

Hypogenic speleogenesis can be identi?ed at different scales (basinal ?ow patterns at the regional scale, cave patterns at cave system scale, meso- and micromorphology in cave passages). We focus here on small scale features produced by both corrosion and deposition. In the phreatic zone, the corrosion features (speleogens) are a morphologic suite of rising ?ow forms, phreatic chimneys, bubble trails. At the water table are thermo-sulfuric discharge slots, notches with ?at roofs. Above a thermal water table the forms re?ect different types of condensation runoff: wall convection niches, wall niches, ceiling cupolas, ceiling spheres, channels, megascallops, domes, vents, wall partitions, weathered walls, boxwork, hieroglyphs, replacement pockets, corrosion tables, and features made by acid dripping, such as drip tubes, sulfuric karren and cups. Each type of feature is described and linked to its genetic process. Altogether, these features are used to identify the dominant processes of speleogenesis in hypogenic cave systems. Hypogenic caves were recognized early, especially where thermal or sulfuric processes were active (MARTEL, 1935; PRINCIPI, 1931). However SOCQUET (1801) was one of the earliest modern contributors to speleogenetic knowledge, and probably the ?rst to identify the role of sulfuric speleogenesis by condensation-corrosion due to thermal convection. More recent major contributions evidenced the role of sulfuric speleogenesis and hydrothermalism (e.g. DUBLYANSKY, 2000; EGEMEIER, 1981; FORTI, 1996; GALDENZI AND MENICHETTI, 1995; HILL, 1987; PALMER AND PALMER, 1989). However, most of these case-studies were often considered as “exotic”, regarding the “normal” (i.e. epigenic) speleogenesis. Only recently, KLIMCHOUK (2007) provided a global model, allowing the understanding of “hypogenic” speleogenesis and gathering the characteristics of hypogenic caves. Consequently, the number of caves where a hypogenic origin is recognized dramatically increased during the last years. The hypogenic origin can be recognized at the regional scale (deep-seated karst in basins), at the scale of an individual cave system because of distinctive features in its pattern, by studying the morphology of the cave conduits, or at the local scale of wall features made by corrosion processes (i.e. speleogens). Such type of features depict the characteristics of local cave development, and by extension the characteristics of speleogenesis. The description and interpretation of hypogenic speleogens is generally scattered in the literature. The aim of this paper is to gather the most important hypogenic speleogens, considered here as indicators, and used for the identi?cation and characterization of the hypogenic speleogenesis. Our knowledge is based on the compilation of about 350 caves from the literature, and the study of some of the most signi?cant caves (AUDRA, 2007; AUDRA et al., 2002, 2006). In this paper, we focus on the speleogens (i.e. wall- scale corrosion features) as indicators of hypogenic speleogenesis; we exclude here solution feature at larger scale such as conduits and cave systems and depositional features (sediments). Some of the features observed in the sulfuric caves are speci?cally caused by this strong acid. Some features are closely associated with hydrothermalism. Other features that are widespread in hypogene caves are created without sulfuric in?uence. The following typology mainly takes into account the type of runoff. In con?ned settings with slow phreatic ?ow, cave features are common to all types of hypogene processes, whether they are sulfuric or not (i.e. carbonic, hydrothermal…). In uncon?ned settings, condensation-corrosion processes take place above the water table. These aerial processes, enhanced by the oxidation of sul?des by the thermal convections, and by the microbial processes, result in a large variety of cave features. Some features are closely related to speci?c processes. Consequently, they are considered as valuable indicators of the sulfuric speleogenesis.


HYPOGENE CAVE PATTERNS, 2009, Audra P. , Mocochain L. , Bigot J. Y. , Nobecourt J. C.

The hypogenic cave pattern re?ects the speleogenetic processes incvolved. Processes vary according to the depth in the aquifer, involving mixing corrosion by convergent ?ux and with meteoric water, cooling, sulfur oxidation, carbon dioxide degassing, and condensation-corrosion. Cave patterns are: isolated geodes, 2D and 3D multistory systems following joints and bedding planes, Giant phreatic shaft, Water table mazes, Isolated chambers, Upwardly dendritic spheres, Water table cave, ‘Smoking’ shafts. The development of caves by hypogene processes (i.e. “hypogenic speleogenesis”) corresponds to the formation of caves by water that recharges the soluble formation from below, driven by hydrostatic pressure or other sources of energy, independent of recharge from the overlying or immediately adjacent surface” (FORD, 2006). Hypogenic caves - often referred to as “thermal caves” - were often considered as an “exotic” side of the “normal” (i.e. meteoric) caves. Palmer (1991) estimated that about 10% caves have hypogenic origin. Recent studies (overview in KLIMCHOUK, 2007) have emphasized the speci?c hydrogeological background and shown that hypogenic caves are much more common than previously thought. The extreme diversity of settings (carbonic, sulfuric, thermal, cold, deep phreatic, shallow phreatic, vadose...) in different geological or geomorphological contexts produces a puzzling impression: each hypogenic cave seems to be unique, with few characteristics in common with the other hypogenic caves in terms of their patterns.


Hypogene Speleogenesis and Karst Hydrogeology of Artesian Basins, 2009,

The volume contains papers presented during the International Conference held May 13 through 17, 2009 in Chernivtsi, Ukraine.

The PDF file contains cover, title and contents pages. Download and save this file to your disk and use hyperlinked titles of papers in the content list to download PDF files of individual papers. 

CONTENTS

PRINCIPAL FEATURES OF HYPOGENE SPELEOGENESIS
Alexander Klimchouk

HYPOGENE CAVE PATTERNS
Philippe Audra, Ludovic Mocochain, Jean-Yves Bigot, and Jean-Claude Nobécourt

MORPHOLOGICAL INDICATORS OF SPELEOGENESIS: HYPOGENIC SPELEOGENS
Philippe Audra, Ludovic Mocochain, Jean-Yves Bigot, and Jean-Claude Nobécourt

HYPOGENE CAVES IN DEFORMED (FOLD BELT) STRATA: OBSERVATIONS FROM EASTERN AUSTRALIA AND CENTRAL EUROPE
R.A.L. Osborne

IDENTIFYING PALEO WATER-ROCK INTERACTION DURING HYDROTHERMAL KARSTIFICATION: A STABLE ISOTOPE APPROACH
Yuri Dublyansky and Christoph Spötl

MICROORGANISMS AS SPELEOGENETIC AGENTS: GEOCHEMICAL DIVERSITY BUT GEOMICROBIAL UNITY
P.J.Boston, M.N. Spilde, D.E. Northup, M.D. Curry, L.A. Melim, and L. Rosales-Lagarde

SIDERITE WEATHERING AS A REACTION CAUSING HYPOGENE SPELEOGENESIS: THE EXAMPLE OF THE IBERG/HARZ/GERMANY Stephan Kempe

SIMULATING THE DEVELOPMENT OF SOLUTION CONDUITS IN HYPOGENE SETTINGS
C. Rehrl, S. Birk, and A.B. Klimchouk

EVOLUTION OF CAVES IN POROUS LIMESTONE BY MIXING CORROSION: A MODEL APPROACH
Wolfgang Dreybrodt, Douchko Romanov, and Georg Kaufmann

SPELEOGENESIS OF MEDITERRANEAN KARSTS: A MODELLING APPROACH BASED ON REALISTIC FRACTURE NETWORKS
Antoine Lafare, Hervé Jourde, Véronique Leonardi, Séverin Pistre, and Nathalie Dörfliger

GIANT COLLAPSE STRUCTURES FORMED BY HYPOGENIC KARSTIFICATION: THE OBRUKS OF THE CENTRAL ANATOLIA, TURKEY
C. Serdar Bayari, N. Nur Ozyurt, and Emrah Pekkans

ON THE ROLE OF HYPOGENE SPELEOGENESIS IN SHAPING THE COASTAL ENDOKARST OF SOUTHERN MALLORCA (WESTERN MEDITERRANEAN)
Joaquín Ginés, Angel Ginés, Joan J. Fornós, Antoni Merino and Francesc Gràcia

HYPOGENE CAVES IN THE APENNINES (ITALY)
Sandro Galdenzi

STEGBACHGRABEN, A MINERALIZED HYPOGENE CAVE IN THE GROSSARL VALLEY, AUSTRIA
Yuri Dublyansky, Christoph Spötl, and Christoph Steinbauer

HYPOGENE CAVES IN AUSTRIA
Lukas Plan, Christoph Spötl, Rudolf Pavuza, Yuri Dublyansky

KRAUSHÖHLE: THE FIRST SULPHURIC ACID CAVE IN THE EASTERN ALPS (STYRIA, AUSTRIA) (Abstract only)
Lukas Plan, Jo De Waele, Philippe Audra, Antonio Rossi, and Christoph Spötl

HYDROTHERMAL ORIGIN OF ZADLAŠKA JAMA, AN ANCIENT ALPINE CAVE IN THE JULIAN ALPS, SLOVENIA
Martin Knez and Tadej Slabe

ACTIVE HYPOGENE SPELEOGENESIS AND THE GROUNDWATER SYSTEMS AROUND THE EDGES OF ANTICLINAL RIDGES
Amos Frumkin

SEISMIC-SAG STRUCTURAL SYSTEMS IN TERTIARY CARBONATE ROCKS BENEATH SOUTHEASTERN FLORIDA, USA: EVIDENCE FOR HYPOGENIC SPELEOGENESIS?
Kevin J. Cunningham and Cameron Walker

HYPOGENE SPELEOGENESIS IN THE PIEDMONT CRIMEA RANGE
A.B. Klimchouk, E.I. Tymokhina and G.N. Amelichev

STYLES OF HYPOGENE CAVE DEVELOPMENT IN ANCIENT CARBONATE AREAS OVERLYING NON-PERMEABLE ROCKS IN BRAZIL AND THE INFLUENCE OF COMPETING MECHANISMS AND LATER MODIFYING PROCESSES
Augusto S. Auler

MORPHOLOGY AND GENESIS OF THE MAIN ORE BODY AT NANISIVIK ZINC/LEAD MINE, BAFFIN ISLAND, CANADA: AN OUTSTANDING EXAMPLE OF PARAGENETIC DISSOLUTION OF CARBONATE BEDROCKS WITH PENE-CONTEMPORANEOUS PRECIPITATION OF SULFIDES AND GANGUE MINERALS IN A HYPOGENE SETTING
Derek Ford

THE INFLUENCE OF HYPOGENE AND EPIGENE SPELEOGENESIS IN THE EVOLUTION OF THE VAZANTE KARST MINAS GERAIS STATE, BRAZIL
Cristian Bittencourt, Augusto Sarreiro Auler, José Manoel dos Reis Neto, Vanio de Bessa and Marcus Vinícios Andrade Silva

HYPOGENIC ASCENDING SPELEOGENESIS IN THE KRAKÓW-CZĘSTOCHOWA UPLAND (POLAND) ? EVIDENCE IN CAVE MORPHOLOGY AND SURFACE RELIEF
Andrzej Tyc

EVIDENCE FROM CERNA VALLEY CAVES (SW ROMANIA) FOR SULFURIC ACID SPELEOGENESIS: A MINERALOGICAL AND STABLE ISOTOPE STUDY
Bogdan P. Onac, Jonathan Sumrall, Jonathan Wynn, Tudor Tamas, Veronica Dărmiceanu and Cristina Cizmaş

THE POSSIBILITY OF REVERSE FLOW PIRACY IN CAVES OF THE APPALACHIAN MOUNTAIN BELT (Abstract only)
Ira D. Sasowsky

KARSTOGENESIS AT THE PRUT RIVER VALLEY (WESTERN UKRAINE, PRUT AREA)
Viacheslav Andreychouk and Bogdan Ridush

ZOLOUSHKA CAVE: HYPOGENE SPELEOGENESIS OR REVERSE WATER THROUGHFLOW?
V. Eirzhyk (Abstract only)

EPIGENE AND HYPOGENE CAVES IN THE NEOGENE GYPSUM OF THE PONIDZIE AREA (NIECKA NIDZIAŃSKA REGION), POLAND
Jan Urban, Viacheslav Andreychouk, and Andrzej Kasza

PETRALONA CAVE: MORPHOLOGICAL ANALYSIS AND A NEW PERSPECTIVE ON ITS SPELEOGENESIS
Georgios Lazaridis

HYPOGENE SPELEOGENESIS IN MAINLAND NORWAY AND SVALBARD?
Stein-Erik Lauritzen

VILLA LUZ PARK CAVES: SPELEOGENESIS BASED ON CURRENT STRATIGRAPHIC AND MORPHOLOGIC EVIDENCE (Abstract only)
Laura Rosales-Lagarde, Penelope J. Boston, Andrew Campbell, and Mike Pullin

HYPOGENE KARSTIFICATION IN SAUDI ARABIA (LAYLA LAKE SINKHOLES, AIN HEETH CAVE)
Stephan Kempe, Heiko Dirks, and Ingo Bauer

HYPOGENE KARSTIFICATION IN JORDAN (BERGISH/AL-DAHER CAVE, UWAIYED CAVE, BEER AL-MALABEH SINKHOLE)
Stephan Kempe, Ahmad Al-Malabeh, and Horst-Volker Henschel

ASSESSING THE RELIABILITY OF 2D RESISTIVITY IMAGING TO MAP A DEEP AQUIFER IN CARBONATE ROCKS IN THE IRAQI KURDISTAN REGION
Bakhtiar K. Aziz and Ezzaden N. Baban

FEATURES OF GEOLOGICAL CONDITIONS OF THE ORDINSKAYA UNDERWATER CAVE, FORE-URALS, RUSSIA
Pavel Sivinskih

INIAAIIINOE AEIIAAIIIAI NIAEAIAAIACA AI?II-NEEAA?AOIE IAEANOE CAIAAIIAI EAAEACA
A.A.Aao?ooaa

AEOAEIIIA NO?IAIEA AEA?IAAINOA?U: IIAAEU AA?OEEAEUIIE CIIAEUIINOE
A.I. Eaoaaa

?IEU EA?NOA A OI?IE?IAAIEE NIEAIUO AIA E ?ANNIEIA IEAI?ENEIAI AANNAEIA
Aeaenaia? Eiiiiia, Na?aae Aeaenaaa, e Na?aae Nooia


The association between bubble trails and folia: a morphological and sedimentary indicator of hypogenic speleogenesis by degassing, example from Adaouste Cave (Provence, France), 2009, Audra P. Mocochain L. Bigot J. Y. Nobé, Ourt J. C.

Bubble trails are subaqueous features in carbonate caves, which are made by the corrosion of ascending carbon dioxide bubbles. Folia are calcite deposits resembling inverted rimstone dams in saturated pools. Based on morphological studies in Adaouste Cave


Morphogenesis of hypogenic caves, 2009, Klimchouk A. B.

Hypogenic speleogenesis is the formation of solution-enlarged permeability structures by waters ascending to a cave-forming zone from below in leaky confined conditions, where deeper groundwaters in regional or intermediate flow systems interact with shallower and more local groundwater flow systems. This is in contrast to more familiar epigenic speleogenesis which is dominated by shallow groundwater systems receiving recharge from the overlying or immediately adjacent surface. Hypogenic caves are identified in various geological and tectonic settings, formed by different dissolutional mechanisms operating in various lithologies. Despite these variations, resultant caves demonstrate a remarkable similarity in patterns and meso-morphology, which strongly suggests that the hydrogeologic settings were broadly identical in their formation. Hypogenic caves commonly demonstrate a characteristic morphologic suite of cave morphs resulting from rising flow across the cave-forming zone with distinct buoyancy-dissolution components. In addition to hydrogeological criteria (hydrostratigraphic position, recharge-discharge configuration and flow pattern viewed from the perspective of the evolution of a regional groundwater flow system), morphogenetic analysis is the primary tool in identifying hypogenic caves. Cave patterns resulting from ascending transverse speleogenesis are strongly guided by the permeability structure in a cave formation. They are also influenced by the discordance of permeability structure in the adjacent beds and by the overall hydrostratigraphic arrangement. Three-dimensional mazes with multiple storeys, or complex 3-D cave systems are most common, although single isolated chambers, passages or crude clusters of a few intersecting passages may occur where fracturing is scarce and laterally discontinuous. Large rising shafts and collapse sinkholes over large voids, associated with deep hydrothermal systems, are also known. Hypogenic caves include many of the largest, by integrated length and by volume, documented caves in the world. More importantly, hypogenic speleogenesis is much more widespread than it was previously presumed. Growing recognition of hypogenic speleogenesis and improved understanding of its peculiar characteristics has an immense importance to both karst science and applied fields as it promises to answer many questions about karst porosity (especially as deep-seated settings are concerned) which remained poorly addressed within the traditional epigenetic karst paradigm.


SEISMIC-SAG STRUCTURAL SYSTEMS IN TERTIARY CARBONATE ROCKS BENEATH SOUTHEASTERN FLORIDA, USA: EVIDENCE FOR HYPOGENIC SPELEOGENESIS?, 2009, Cunningham K. , Walker C.

High-resolution, multichannel seismic-re?ection data recently acquired mostly in Biscayne Bay, southeastern Florida, exhibit disturbances in parallel seismic re?ections that correspond to the carbonate rocks of the Floridan aquifer system and lower part of the overlying intermediate con?ning unit. These disruptions in seismic re?ections are indicative of structural characteristics in carbonate rocks of Eocene to middle Miocene age that are interpreted to be related to collapsed paleocaves or collapsed paleocave systems, and include (1) fractures; (2) faults; (3) narrow (hundreds-of-m- scale wide) seismic-sag structural systems; and (4) broad (km-scale wide) seismic-sag structural systems. Commonly, the seismic-sag structural systems are multistoried, re?ecting a vertical arrangement of cyclic zones of structural sags that exhibit a progressive evolution from cave formation; cave collapse; suprastratal sag; and in some cases, ?nal in?ll of the upward termination of sag zones. In the study area, these structural systems are buried by upper Miocene-to-Holocene sedimentary rocks and sediments; however, they may manifest as well-documented, hundreds-of-m-scale wide, sinkholes along the submarine surface of the continental margin in the Straits of Florida. The potential link between the seismic sags and submarine sinkholes suggests the sea?oor sinkholes began to form as early as during the Eocene. We will discuss, speleogenic mechanisms dominating the formation of the narrow, seismic-sag structures that include: vadose, water-table, regional mixing zone corrosive, and ?ank-margin processes. Further, three mechanisms are postulated for the speleogenesis of the paleocave systems associated with the broad seismic-sag structural systems: (1) corrosion by an Eocene mixed fresh-saltwater zone associated with a regional groundwater ?ow system beneath the southern part of the paleo-Florida Platform, (2) hypogenic speleogenesis associated with upward groundwater ?ow driven by Kohout convection and dissolution by mixed fresh and saline groundwater, or (3) hypogenic spelogenesis associated with the upward ascension of hydrogen-sul?de-bearing groundwater charged by dissolution and the reduction of calcium sulfates in deeper Eocene or Paleocene rocks. We will contrast and compare our theories on the timing and processes involved in the formation of seismic-sag structural systems with those proposed in the existing literature for the submarine sinkholes on the continental margin in the Straits of Florida, and discuss how the seismic-sag structural systems and submarine sinkholes may be linked. Future marine seismic data acquisition and interpretation is planned to help develop more accurate timing of formation of paleocaves and paleocave systems, their collapse, and structural impact on suprastratal rocks, and more decisive insight into the speleogenic processes that proceed during the evolution of these seismic-sag structural systems within the Florida Platform.


HYPOGENE SPELEOGENESIS IN THE PIEDMONT CRIMEA RANGE, 2009, Klimchouk A. , Tymokhina E. , Amelichev G.

Intense development of the theory and criteria for identification of hypogenic speleogenesis during the past few years has stimulated re-interpretation of karst phenomena in many regions of the world. Recent research strongly suggests that solution features in the Piedmont Range of the Crimean Mountains, previously believed to be the result of hypergene (epigene) karstification, were in fact formed in a hypogenic environment due to ascending transverse flow in a stratified artesian system. Tectonically, the Piedmont Range of Crimea is an edge of the Scythian Plate, uplifted and partially eroded along the regional fault separating the plate from the folded region of the Crimea Mountains. The Cretaceous and Paleogene sequence dips 5 to 20o to north and north-west, where it plunges beneath a Neogene cover. It is exposed within the Piedmont Range as a series of distinct cuestas generally facing south-east. Karst features are represented by 26 caves and abundant, diverse solution forms at the cuesta escarps. Most of the karst develops in two distinct limestone units of Paleocene (Danian) and Eocene (Lutetian) but some are present in the underlying Maastrichtian unit of Cretaceous. There are strong and systematic evidences that the caves have a hypogenic origin and that most of the solution features along the scarps are remnants of morphologies of hypogenically karstified fractures, the walls of which are now exposed due to block-fall retreat of the scarp faces. The features in various beds demonstrate strong lithostratigraphic control in their distribution and are vertically stacked into transverse complexes. Caves are fracture-controlled, linear, or crude maze clusters, demonstrating the complete suite of morphologies indicative of hypogenic origin. Isolated cavities, expressed in the contemporary scarps as grottoes, niches and as zones of spongework porosity, developed where laterally conductive beds of higher initial porosity were crossed by vertical fractures that once conducted rising fluids from an underlying regional flow system. The Piedmont Range of Crimea was a part of the Crimea Plain artesian basin before the Middle Pliocene. Subsequent uplift and initial erosional entrenchment through the Late Pliocene established the pattern of tectonically and geomorphologically guided zones of upward cross-formational discharge and hypogenic speleogenesis. Further valley entrenchment in the region during late Pliocene and early-middle Pleistocene shaped up the modern cuesta relief and drained the Cretaceous- Paleogene sequence. Hypogenically karstified fractures and caves, which are sub-parallel to valleys, provide zones of structural weakness along which blocks fall at the cuesta escarps exposing relict hypogenic morphologies. The Piedmont Crimea Range, with its perfect and extensive exposures of the hypogene karst sequence, provides outstanding opportunities for studying patterns and morphologies of hypogenic speleogenesis, which is important for understanding its hydrogeological functioning and roles in reservoir formation, especially in the adjacent Crimea Plain artesian basin.


PRINCIPAL FEATURES OF HYPOGENE SPELEOGENESIS, 2009, Klimchouk A. B.

Hypogenic and hypergenic (epigenic) karst systems are regularly associated with different types, patterns and segments of flow systems, which are characterized by distinct hydrokinetic, chemical and thermal conditions. Epigenic karst systems, which had long been the focus of most karst/speleogenetic research, are predominantly local systems receiving recharge from the overlying or immediately adjacent surface. Hypogenic karst is associated with discharge regimes of regional or intermediate flow systems dominated by upward flow, although mixing with local systems is commonly involved. Hypogenic speleogenesis tends to operate over long time spans, continuously or intermittently. Its main characteristic is the lack of genetic relationship with groundwater recharge from the overlying or immediately adjacent surface. Hypogenic karst may not be expressed at the surface and is largely climate-independent. Hypogenic speleogenesis is the formation of solution-enlarged permeability structures by waters ascending through a cave-forming zone from below. It develops in leaky confined conditions although it may continue through unconfined ones. Vertical hydraulic communication across lithological boundaries and different porosity systems allows deeper groundwaters in regional or intermediate flow systems to interact with shallower and more local systems, permitting a variety of dissolution mechanisms. There is a specific hydrogeologic mechanism inherent in hypogenic transverse speleogenesis (restricted input/output) that suppresses the positive flow-dissolution feedback and speleogenetic competition seen in the development of initial flowpath networks in hypergene cave genesis, accounting for the more uniform and pervasive conduit development found in the hypogene. Hypogenic caves are found in a wide range of geological and tectonic settings, basinal through folded, being formed by different dissolutional mechanisms operating in various lithologies. Despite these variations, the resulting caves tend to display remarkable similarity in their patterns and meso-morphology, strongly suggesting that the type of ?ow system is the primary control. Hypogenic caves commonly demonstrate a characteristic suite of cave morphologies resulting from rising ?ow across the cave-forming zone, with distinct buoyancy dissolution components. Cave patterns in hypogenic speleogenesis are guided by the initial permeability structure, its vertical heterogeneities (discordance in the permeability structure between adjacent beds) and the mode of water input to, and output from, the cave-forming zone. The latter again depends on relationships between permeability structures in the cave-forming zone and formations that lie below and above. Because of its “transverse flow” nature hypogenic speleogenesis has a clustered distribution in plan view, although initial clusters may merge during further development and extend over considerable areas. Recognition of the wide occurrence, significance and specific characteristics of hypogenic speleogenesis represents a major paradigm shift in karst science that answers many questions not satisfactorily addressed previously.


Karst features of the south-west part of the Piedmont Crimea from the standpoint of the theory of hypogene speleogenesis, 2009, Klimchouk A. B. , Amelichev G. N. , Tymkhina E. I.

The intense development of the theory and criteria of identification of hypogenic speleogenesis during last few years has stimulated re-interpretation of karst phenomena in many regions of the world. Recent research strongly suggest that solution features in the Piedmont Range of the Crimean Mountains, previously believed as being the result of epigenic karstification, were in fact formed in hypogenic environment due to ascending transverse flow in a stratified artesian system. Tectonically, the Piedmont Range of Crimea is an edge of the Scythian Plate, uplifted and partially eroded along the regional fault separating the plate from the folded region of the Mountain Crimea. The Cretaceous and Paleogene sequence is dipping 5 to 20o to north and north-west, where it plunges beneath the Neogene cover. It is exposed within the Piedmont Range as a series of distinct cuestas generally faced to south-east. Karst features are represented by 26 caves and abundant and diverse solution forms at the cuesta escarps. Most of karst features develop in two distinct limestone units of Paleocene (Danian) and Eocene but some are present in the underlying Maastrichtian unit of Cretaceous. There are strong and systematic evidences that the caves have hypogenic origin and that most of solution features at the escarps are remnants of morphologies of hypogenically karstified fractures, which walls are now exposed due to the block-fall retreat of the escarps. The features in various beds demonstrate strong lithostratigraphic control in their distribution and are vertically stacked into transverse complexes. Caves are fracturecontrolled, linear, or crude maze clusters, demonstrating the complete suit of morphologies indicative of hypogenic origin. Isolated cavities, expressed in the contemporary escarps as grottos and niches, as well as zones of spongework porosity, developed where laterally conductive beds of higher initial porosity were crossed by vertical fractures that once conducted rising fluids from a regional flow system.

The Piedmont Range of Crimea was a part of the Plain Crimea artesian basin during the post-Eocene time till the late Pliocene. Uplift and initial erosional entrenchment in the middle through late Pliocene caused the pattern of tectonically and geomorphologically guided zones of upward cross-formational discharge and hypogenic speleogenesis to establish. Further valley entrenchment in the region during Pleistocene shaped up the modern cuesta-like relief and drained the Cretaceous-Paleogene sequence. Hypogenically karstified fractures and caves, which are sub-parallel to valleys, provide zones of structural weakness along which blocks fall at the cuesta escarps exposing relict hypogenic morphologies.

The Piedmont Crimea Range, with its perfect and extensive exposures of the hypogenically karstified sequence, provides outstanding possibilities for studying patterns and morphologies of hypogenic speleogenesis, which is important for understanding its hydrogeological functioning and roles in the reservoir formation, especially in implication to the adjacent Plain Crimea artesian basin.


Phreatic cave calcites - archives of two realms, 2009, Immenhauser, Adrian

Two main types of karst formation are commonly known: the surficial meteoric one and the subsurface (hypogenic) karst, related to both carbonic (H2CO3) and sulphuric (H2S) acids. Nevertheless, a third, less well studied type exists that is referred to here as CO2-regime related karst. This article describes Pleistocene phreatic cave spar from the diapiric Jabal Madar dome in Northern Oman. These caverns and their precipitates probably represent examples of CO2-related karsting and subsequent calcite precipitation. Phreatic calcites form at the interface between two fundamentally different diagenetic and hydrogeological domains: the deep-seated, hydrothermal and the near-surficial, meteoric-vadose one. Changes in the ratio between hydrothermal upwelling and meteoric influx are recorded in the geochemistry and mineralogy of these calcites making them uncommon archives of two contrasting realms.


The sulfidic thermal caves of Acquasanta Terme (central Italy), 2010, Galdenzi S. , Cocchioni F. , Filipponi G. , Morichetti L. , Scuri S. , Selvaggio R. , And Cocchioni M.

The caves of Acquasanta Terme (central Italy) open at the core of a wide anticline, in the valley of the Tronto River. Cave development is due to the rise of sulfidic thermal water flowing through a thick marine limestone sequence, overlain by thick, low- permeability formations. Some minor caves are developed in the terraced travertines deposited by the thermal water, but the major caves are developed in marine limestone in the small gorge of the Rio Garrafo stream, a tributary of the Tronto River. These caves have a rising pattern, due to the past flow of thermal water toward the surface. The deepening of the Tronto River Valley lowered the regional water table, perching the Rio Garrafo stream ,50 m above the thermal groundwater. At present, surface water sinks through the pre-existing karst passages to reach the thermal water flowing in the lower parts of the caves. Where these waters mix, rapid corrosion of the walls through sulfuric acid speleogenesis occurs. Annual temperature and chemistrymonitoring of the cave water showed that freshwater contributes up to 45% of the volume at the water table. Dilution events are associated with falling water temperature, which ranges between 44uC and 32uC. At the main spring, 2 km downstream, groundwater dilution was higher resulting in lower temperatures (32uC–21uC) and salinity. The periods of high freshwater dilution correspond with a lowering of pHin the phreatic water and with the release ofH2S and CO2 to the cave atmosphere. In the thermal zones, the concentration of H2S increased from 40 to over 240 ppm, while CO2 increased from 0.44% to 2.7%. These data evidence the influence of sinking surface water on the cave environment and speleogenesis.


Results 1 to 15 of 42
You probably didn't submit anything to search for