Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That ferric oxide is rust; hematite (fe2o3) [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for impact crater (Keyword) returned 11 results for the whole karstbase:
Ring of cenotes (sinkholes), Northwest Yucatan, Mexico; its hydrogeologic characteristics and possible association with the Chicxulub impact crater, 1995, Perry Eugene, Marin Luis E. , Mcclain Jana, Velazquez Guadalupe,
A 180-km-diameter semicircular band of abundant karst sinkholes (Ring of Cenotes) in Northwest Yucatan, Mexico, coincides approximately with a concentric ring of the buried Chicxulub structure, a circular feature manifested in Cretaceous and older rocks, that has been identified as the product of the impact of a bolide. The ring, expressed in Tertiary rocks, marks a zone of high permeability as shown by (1) the sinkholes themselves, (2) breaks in the coastal dune system and high density of springs where the ring intersects the coast, and (3) water-level transects characterized by a decline in water level toward the ring. Any direct relation that exists between the Ring of Cenotes and the Chicxulub structure bears on regional hydrogeology. If the layer or zone responsible for the ring is deeply buried, it may act as a barrier to the movement of ground water across the main flow direction. Shallower zones of horizontal permeability could result in less complete diversion of ground water. Through its influence on Yucatan aquifer characteristics, the ring may provide a link between modern environmental problems and astrogeology. Possible origins for the Ring of Cenotes are (1) faulting, perhaps reactivated by post-Eocene-mid-Miocene basin loading, (2) permeability in a buried reef complex developed in the shallow Paleocene sea around the crater rim, or (3) breccia collapse occasioned by consolidation or by solution of evaporite components. If the ring developed on ancient faults, it may outline hydrothermal systems and mineral deposits produced during Paleocene cooling of the Chicxulub melt sheet

Hydrogeological investigations in northwestern Yucatan, Mexico, using resistivity surveys, 1996, Steinich B. , Marin L. E. ,
Eight Schlumberger soundings and four Wenner anisotropy measurements were conducted in the northwestern section of the Yucatan Peninsula for hydrogeological investigations of a karst aquifer. This system is influenced by a circular high permeability zone (Ring of Cenotes) probably related to the Chicxulub Impact Crater. Schlumberger soundings and Wenner anisotropy measurements show that the karst aquifer can be modeled as an electrically anisotropic medium. Anisotropy is related to preferential permeability directions channeling ground-water flow within the aquifer. Directions of maximum permeability were determined using Wenner anisotropy measurements. Electrical soundings were conducted at different sites near the Ring of Cenotes. Resistivity values decrease toward the Ring of Cenotes supporting the hypothesis that selected segments of the Ring have high permeability. Several soundings were conducted in order to study lateral permeability variations along the Ring. A high permeability section can be identified by low resistivity models and is related to a zone of high cenote density. A low permeability section of the Ring was found showing high resistivity models. This zone overlaps with an area of low cenote density. Electrical soundings were used to determine the depth of the fresh-water lens; the interface was detected along two profiles perpendicular and parallel to the Ring of Cenotes resulting in a depth that ranged from 18 m near the coast up to 110 m in the southeastern part of the study area. The predicted depths of the interface using electrical methods showed a good correlation with Ghyben-Herzberg and measured interface depths at some sites. Discrepancies between calculated and interpreted interface depths at two sites may be explained by horizontal-to-vertical permeability anisotropy

Spaceborne imaging radar-C (SIR-C) observations of groundwater discharge and wetlands associated with the Chicxulub impact crater, northwestern Yucatan Peninsula, Mexico, 2001, Pope Kevin O. , Rejmankova Eliska, Paris Jack F. ,
Analyses of spaceborne imaging radar-C (SIR-C) data and field data from the northwestern Yucatan Peninsula, Mexico, demonstrate that spaceborne multifrequency polarimetric radars are excellent tools for characterizing patterns of wetland flooding. Seasonal flooding can be detected in most types of forest and marsh in the radar backscatter magnitude and phase data of both L and C band. Field observations made in the wet and dry seasons concurrent with the space missions and chemical analyses of floodwaters confirm that flooding is the product of discharge from the Yucatan aquifer, which consists of a fresh-water lens floating on seawater. This discharge controls the distribution of wetlands. Therefore, vegetation and flooding patterns, mapped with SIR-C imagery, provide valuable information on the hydrogeology of the region. Radar-image maps of wetlands and flooding indicate that there are three major zones of groundwater discharge that correlate with structures of the buried Chicxulub crater--zone 1 with the peak ring, zone 2 with the crater rim, and zone 3 with the exterior ring. Zone 1 has sulfate-poor discharge, unlike the sulfate-rich discharge in zones 2 and 3. The highest discharge is in zone 3, where the buried crater is closest to the surface. This groundwater-discharge pattern can be explained by tidal pumping of fresh water to the surface through high permeability zones developed in the Tertiary carbonates overlying crater faults and escarpments

Groundwater-flow modeling in the Yucatan karstic aquifer, Mexico, 2002, Gonzalezherrera R. , Pinto I. , Gamboavargas J. ,
The current conceptual model of the unconfined karstic aquifer in the Yucatan Peninsula, Mexico, is that a fresh-water lens floats above denser saline water that penetrates more than 40 km inland. The transmissivity of the aquifer is very high so the hydraulic gradient is very low, ranging from 7-10 mm/km through most of the northern part of the peninsula. The computer modeling program AQUIFER was used to investigate the regional groundwater flow in the aquifer. The karstified zone was modeled using the assumption that it acts hydraulically similar to a granular, porous medium. As part of the calibration, the following hypotheses were tested: (1) karstic features play an important role in the groundwater-flow system; (2) a ring or belt of sinkholes in the area is a manifestation of a zone of high transmissivity that facilitates the channeling of groundwater toward the Gulf of Mexico; and (3) the geologic features in the southern part of Yucatan influence the groundwater-flow system. The model shows that the Sierrita de Ticul fault, in the southwestern part of the study area, acts as a flow barrier and head values decline toward the northeast. The modeling also shows that the regional flow-system dynamics have not been altered despite the large number of pumping wells because the volume of water pumped is small compared with the volume of recharge, and the well-developed karst system of the region has a very high hydraulic conductivity

The hydrogeochemistry of the karst aquifer system of the northern Yucatan Peninsula, Mexico, 2002, Perry E. , Velazquezoliman G. , Marin L. ,
Based on groundwater geochemistry, stratigraphy, and surficial and tectonic characteristics, the northern Yucatan Peninsula, Mexico, a possible analog for ancient carbonate platforms, is divided into six hydrogeochemical/physiographic regions: (1) Chicxulub Sedimentary Basin, a Tertiary basin within the Chicxulub impact crater; (2) Cenote Ring, a semicircular region of sinkholes; (3) Pockmarked Terrain, a region of mature karst; (4) Ticul fault zone; (5) Holbox Fracture Zone-Xel-Ha Zone; and (6) Evaporite Region. Regional characteristics result from tectonics, rock type, and patterns of sedimentation, erosion, and rainfall. The Cenote Ring, characterized by high groundwater flow, outlines the Chicxulub Basin. Most groundwater approaches saturation in calcite and dolomite but is undersaturated in gypsum. Important groundwater parameters are: SO4/Cl ratios related to seawater mixing and sulfate dissolution; Sr correlation with SO4, and saturation of Lake Chichancanab water with celestite. indicating celestite as a major source of Sr; high Sr in deep water of cenotes, indicating deep circulation and contact of groundwater with evaporite; and correlation of Ca, Mg, and SO4, probably related to gypsum dissolution and dedolomitization. Based on geochemistry we propose: (1) a fault between Lake Chichancanab and Cenote Azul; (2) deep seaward movement of groundwater near Cenote Azul; and (3) contribution of evaporite dissolution to karst development in the Pockmarked Terrain. Chemical erosion by mixing-zone dissolution is important in formation of Estuario Celestun and other estuaries, but is perhaps inhibited at Lake Bacalar where groundwater dissolves gypsum, is high in Ca, low in CO3, and does not become undersaturated in calcite when mixed with seawater

Distribution, morphology, and origins of Martian pit crater chains, 2004, Wyrick D. , Ferrill D. A. , Morris A. P. , Colton S. L. , Sims D. W. ,
Pit craters are circular to elliptical depressions found in alignments (chains), which in many cases coalesce into linear troughs. They are common on the surface of Mars and similar to features observed on Earth and other terrestrial bodies. Pit craters lack an elevated rim, ejecta deposits, or lava flows that are associated with impact craters or calderas. It is generally agreed that the pits are formed by collapse into a subsurface cavity or explosive eruption. Hypotheses regarding the formation of pit crater chains require development of a substantial subsurface void to accommodate collapse of the overlying material. Suggested mechanisms of formation include: collapsed lava tubes, dike swarms, collapsed magma chamber, substrate dissolution ( analogous to terrestrial karst), fissuring beneath loose material, and dilational faulting. The research described here is intended to constrain current interpretations of pit crater chain formation by analyzing their distribution and morphology. The western hemisphere of Mars was systematically mapped using Mars Orbiter Camera (MOC) images to generate ArcView(TM) Geographic Information System (GIS) coverages. All visible pit crater chains were mapped, including their orientations and associations with other structures. We found that pit chains commonly occur in areas that show regional extension or local fissuring. There is a strong correlation between pit chains and fault-bounded grabens. Frequently, there are transitions along strike from ( 1) visible faulting to ( 2) faults and pits to ( 3) pits alone. We performed a detailed quantitative analysis of pit crater morphology using MOC narrow angle images, Thermal Emission Imaging System (THEMIS) visual images, and Mars Orbiter Laser Altimeter (MOLA) data. This allowed us to determine a pattern of pit chain evolution and calculate pit depth, slope, and volume. Volumes of approximately 150 pits from five areas were calculated to determine volume size distribution and regional trends. The information collected in the study was then compared with non-Martian examples of pit chains and physical analog models. We evaluated the various mechanisms for pit chain development based on the data collected and conclude that dilational normal faulting and sub-vertical fissuring provide the simplest and most comprehensive mechanisms to explain the regional associations, detailed geometry, and progression of pit chain development

Review: The Yucatan Peninsula karst aquifer, Mexico , 2011, Bauergottwein Peter, Gondwe Bibi R. N. , Charvet Guillaume, Marin Luis E. , Rebolledovieyra Mario, Meredizalonso Gonzalo

The Yucatan Peninsula karst aquifer is one of the most extensive and spectacular karst aquifer systems on the planet. This transboundary aquifer system extends over an area of approximately 165,000 km2 in Mexico, Guatemala and Belize. The Triassic to Holocene Yucatan limestone platform is located in the vicinity of the North American/Caribbean plate boundary and has been reshaped by a series of tectonic events over its long geologic history. At the end of the Cretaceous period, the Yucatan Peninsula was hit by a large asteroid, which formed the Chicxulub impact crater. The Yucatan Peninsula karst aquifer hosts large amounts of groundwater resources which maintain highly diverse groundwater-dependent ecosystems. Large parts of the aquifer are affected by seawater intrusion. Anthropogenic pollution of the aquifer has been increasing over the past few decades, owing to relentless economic development and population growth on the Peninsula. This review summarizes the state of knowledge on the Yucatan Peninsula karst aquifer and outlines the main challenges for hydrologic research and practical groundwater-resources management on the Peninsula.


Review: The Yucatn Peninsula karst aquifer, Mexico, 2011, Bauergottwein P. , Gondwe B. R. N. , Charvet G. , Marn L. E. , Rebolledovieyra M. , Meredizalonso G.

The Yucatán Peninsula karst aquifer is one of the most extensive and spectacular karst aquifer systems on the planet. This transboundary aquifer system extends over an area of approximately 165,000 km2 in México, Guatemala and Belize. The Triassic to Holocene Yucatán limestone platform is located in the vicinity of the North American/Caribbean plate boundary and has been reshaped by a series of tectonic events over its long geologic history. At the end of the Cretaceous period, the Yucatán Peninsula was hit by a large asteroid, which formed the Chicxulub impact crater. The Yucatán Peninsula karst aquifer hosts large amounts of groundwater resources which maintain highly diverse groundwater-dependent ecosystems. Large parts of the aquifer are affected by seawater intrusion. Anthropogenic pollution of the aquifer has been increasing over the past few decades, owing to relentless economic development and population growth on the Peninsula. This review summarizes the state of knowledge on the Yucatán Peninsula karst aquifer and outlines the main challenges for hydrologic research and practical groundwater-resources management on the Peninsula


Höhlen der Schwäbischen Alb als Pegelschreiber für Flussgeschichte und Tektonik in Südwestdeutschland seit dem Miozän, 2011, Strasser Marcel

In south western Germany the karstified plateau of the Swabian Alb consisting of Upper Jurassic limestones hosts numerous caves, dolines, and dry valleys. Known strath terraces, conglomerates, volcanoes, and impact craters within the study area already provided important time stamps for former studies reconstructing landscape history. It is widely understood, that spatial distribution of most karst features is closely related to the palaeo-water-table and its discontinuous lowering over time, which in turn is the result of incision and/or uplift. The situation of the Swabian Alb at the northern rim of the Northern Alpine Foreland Basin and east of the Rhine Graben valley is the reason for this uplift. Many caves can be used as gauge for vertical displacement, considering horizontal cave passages as product of a stationary palaeowater-table and vertical sections as result of falling base level. In contrast recent studies deal with a different type of speleogenesis independent of base level. This hypogenic speleogenesis must be discussed for the caves of the Swabian Alb. The recently discovered cave named Laierhöhle near Geislingen/Steige is a typical 3d-maze providing several horizontal levels. Passage pattern and distinctive corrosion features match with morphologies (feeders, rising wall- and ceiling channels, outlets) characteristical for hypogenic speleogenesis. However, artesian situations, hydrothermal water or confined aquifers as critical conditions for hypogenic speleogenesis can not be verified. Other features like horizontal passages, water table markers, key-hole-features, and massive stratified sediment bodies are pointing to an epigenic, water-table related speleogenesis. In this study therefore a mixed model for speleogenesis of Laierhöhle is presented, assuming a strong initial deep-phreatic corrosion along fractures and fissures, followed by intensive widening at the palaeo water-table resulting in the formation of horizontal passages. Correlations between horizontal cave-levels, valley-bottoms, strath-terraces, local conglomerates and other caves lead to new and more precise data on the fluvial history, changing drainage pattern, and the uplift of parts of southwest Germany.

In the course of Examinations of cave sediments spherical metallic particles were detected. These magnetic spherules are ablation-products from meteorites during impact. After fallout and flushing into karstic voids and caves the spherules got archived till today. Spherules within Laierhöhle, Laichinger Tiefenhöhle and Mordloch are supposed to originate from the impact event producing the impact craters Steinheimer Becken and/or the Nördlinger Ries 14.59 Ma ago. Within most of the cave sediments spherules are accompanied by crystals of titano-magnetite, which built during volcanic activity of the Urach-Kirchheim volcanic field. Both spherules and titano-magnetites are proxies for re-deposited Mid Miocene Sediments. In this study I could correlate speleogenetic with dated geomorphic features and thus came to a chronology of events. The Laierhöhle records five episodes of long-term stability of the karst water table covering the time-span from late Middle Miocene until the Pliocene/Pleistocene transition. The first two stable episodes can be dated to the late Middle Miocene and Late Miocene (horizontal levels 1 and 2a). An episode responsible for the formation of level 2b falls within Early Pliocene time. Levels 3a and 3b are spatially well separated but must have formed within a relatively short timespan towards the end of the Pliocene. In the working area, total depth of penetrative karstification was in the order of 120 m. This penetration has been accomplished over a period of approximately 12 Ma resulting in an average uplift rate of 0.01 mm/a.


Morphology and geology of an interior layered deposit in the western Tithonium Chasma, Mars, 2013, Baioni, Davide

This paper describes a morphologic and morphometric survey of a 3.1 km-high, domeshaped upland in western Tithonium Chasma (TC) which coincides with areas containing abundant surface signatures of the sulphate mineral kiersite, as identified by the OMEGA image spectrometer. The morphologic features of the dome were investigated through an integrated analysis of the available Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment (HiRISE), Mars Orbiter Camera, and Context Camera data, while the morphometric characteristics of the structure were measured using a topographic map (25-m contour interval) built from high-resolution stereo camera (HRSC) and Mars Orbiter Laser Altimeter (MOLA) data.
The dome displays surface features that were apparently formed by liquid water probably released from melting ice. These features include karst landforms as well as erosive and depositional landforms. The surface of the dome has few impact craters, which suggests a relatively young age for the dome. Layers in the dome appear laterally continuous and are visibly dipping toward the slopes in some places.
The mineralogical and structural characteristics of the dome suggest that it was emplaced as a diapir, similar to the dome structure located in the eastern part of TC, and to many salt diapirs on Earth.


Morphology and geology of an interior layered deposit in the western Tithonium Chasma, Mars, 2013, Baioni, Davide

This paper describes a morphologic and morphometric survey of a 3.1 km-high, domeshaped upland in western Tithonium Chasma (TC) which coincides with areas containing abundant surface signatures of the sulphate mineral kiersite, as identified by the OMEGA image spectrometer. The morphologic features of the dome were investigated through an integrated analysis of the available Mars Reconnaissance Orbiter High Resolution Imaging Science Experiment (HiRISE), Mars Orbiter Camera, and Context Camera data, while the morphometric characteristics of the structure were measured using a topographic map (25-m contour interval) built from high-resolution stereo camera (HRSC) and Mars Orbiter Laser Altimeter (MOLA) data.

The dome displays surface features that were apparently formed by liquid water probably released from melting ice. These features include karst landforms as well as erosive and depositional landforms. The surface of the dome has few impact craters, which suggests a relatively young age for the dome. Layers in the dome appear laterally continuous and are visibly dipping toward the slopes in some places.

The mineralogical and structural characteristics of the dome suggest that it was emplaced as a diapir, similar to the dome structure located in the eastern part of TC, and to many salt diapirs on Earth.


Results 1 to 11 of 11
You probably didn't submit anything to search for