Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That gorge is a narrow passage or canyon in a mountain system [16]. see also canyon.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for initial fracture (Keyword) returned 13 results for the whole karstbase:
ORIGIN AND MORPHOLOGY OF LIMESTONE CAVES, 1991, Palmer A. N. ,
Limestone caves form along ground-water paths of greatest discharge and solutional aggressiveness. Flow routes that acquire increasing discharge accelerate in growth, while others languish with negligible growth. As discharge increases, a maximum rate of wall retreat is approached, typically about 0.01-0.1 cm/yr, determined by chemical kinetics but nearly unaffected by further increase in discharge. The time required to reach the maximum rate is nearly independent of kinetics and varies directly with flow distance and temperature and inversely with initial fracture width, discharge, gradient, and P(CO2). Most caves require 10(4) - 10(5) yr to reach traversable size. Their patterns depend on the mode of ground-water recharge. Sinkhole recharge forms branching caves with tributaries that join downstream as higher-order passages. Maze caves form where (1) steep gradients and great undersaturation allow many alternate paths to enlarge at similar rates or (2) discharge or renewal of undersaturation is uniform along many alternate routes. Flood water can form angular networks in fractured rock, anastomotic mazes along low-angle partings, or spongework where intergranular pores are dominant. Diffuse recharge also forms networks and spongework, often aided by mixing of chemically different waters. Ramiform caves, with sequential outward branches, are formed mainly by rising thermal or H2S-rich water. Dissolution rates in cooling water increase with discharge, CO2 content, temperature, and thermal gradient, but only at thermal gradients of more than 0.01-degrees-C/m can normal ground-water CO2 form caves without the aid of hypogenic acids or mixing. Artesian flow has no inherent tendency to form maze caves. Geologic structure and stratigraphy influence cave orientation and extent, but alone they do not determine branch-work versus maze character

HIGH SULFATE CONCENTRATIONS IN LIMESTONE SPRINGS - AN IMPORTANT FACTOR IN CONDUIT INITIATION, 1995, Worthington S. R. H. , Ford D. C. ,
Major ion concentrations in 404 springs in carbonate strata were found to exhibit a wide range in sulfate values. Sulfate concentrations are often much larger than would be expected from the analysis of samples from surface outcrops. Springs in the Sierra Madre Oriental (Mexico), the Rocky Mountains Front Range (Canada), and the Peak District (England) show similarities in sulfate concentration and in spatial distribution. Springs with high sulfate concentrations are found close to base level and are thermal. Springs with low sulfate concentration are found at higher elevations above base level and are not thermal. There is a direct relationship between sulfate concentration and spring temperature, and an inverse relationship with discharge. The results from the three areas described support a model of local and regional flow patterns, with deep regional flow providing the warm sulfate-rich water. The initial fracture porosity development in these aquifers may owe as much to the removal of sulfur minerals as to the removal of carbonate minerals. High sulfate values are frequently found in carbonate aquifers, so this model may be of widespread applicability

EARLY DEVELOPMENT OF KARST SYSTEMS .2. TURBULENT-FLOW, 1995, Howard A. D. , Groves C. G. ,
A simulation model developed to explore patterns of fracture enlargement within incipient limestone karst aquifers has been extended to turbulent flow. In contrast to the highly selective passage enlargement that occurs early in cave network development under laminar flow, the transition to turbulent flow results in more general passage enlargement, leading to maze networks when initial fractures are large and hydraulic gradients are high. These results support previously published hypotheses for the development of maze patterns, including formation within structural settings that have created initially large fractures or within flow systems periodically inundated by flooding. Maze development is also favored under turbulent flow when passages are entirely water filled, and where the groundwater flow system is long-lived. By contrast, branched patterns are most common when passages become free-surface subterranean streams, because depression of the piezometric surface along main passages, downcutting along main passages, and possible infilling with sediment of side passages limit the sharing of discharge among interconnected fractures or bedding planes that promote maze development

Early evolution of karst aquifers in limestone: Models on two-dimensional percolation clusters, 1997, Dreybrodt W. , Siemers J.
Two-dimensional nets of initial fractures are constructed on a square-lattice by occupying the lines between nearest neighbour sites by a water leading fissure of width a"SUBo" and length l with an occupation probability p. For p > 0.5 percolating nets occur which lead water. To simulate cave genesis we calculate the water flow rates driven by the hydraulic head h through all fissures. By employing nonlinear dissolution rates of the type F=k"SUBn"(l-c/c"SUBeq")'"SUPn" the widening of the fractures is obtained. At the onset of karstification flow is evenly distributed on all fractures. As the system develops solutional widing creates preferred pathways, which attract more and more flow, until at breakthrough both widening and flow increase dramatically. We discuss the evolution of karst aquifers for natural conditions and also upon human impact at dam sites where steep hydraulic gradients may generate water leading conduits below the dam in times comparable to the lifetime of the structure.

Precipitation and dissolution of reactive solutes in fractures, 1998, Dijk P. , Berkowit B.

The precipitation and dissolution of reactive solutes, transported under the action of fully developed laminar flow in saturated fractures, is analyzed assuming an irreversible first-order kinetic surface reaction for one component. Equations describing solute transport, precipitation and dissolution, and the evolution of fracture aperture were approximated and solved using combined analytical and numerical techniques; dimensionless transport parameters incorporated into the solutions were estimated from data available in the literature. Fractures with initially flat, linearly constricted, and sinusoidal apertures were investigated. The initial fracture geometry and the solute saturation content of the inflowing fluid have a profound effect on the reaction processes. The results show that the evolution of the solute transport and fracture geometry can be adequately described by the Damköhler and Péclet numbers. Two extreme transport regimes were identified: relatively uniform evolution of fracture apertures and nonuniform evolution of fracture apertures restricted to the inlet region of fractures. In the case of precipitation with half-life times of the order of seconds to years and with fluid residence times of the order of minutes to days, the time for a fracture to close completely is of the order of days to millions of years. This is consistent with the order of magnitude of hydrogeological timescales. In the model the process of dissolution is the inverse of precipitation, although the combined solute transport and reaction processes are irreversible. These results and the applied dimensionless analysis can be used as a basis for the development of more complex models of reactive solute transport, precipitation, and dissolution in saturated fractured media.


A model of early evolution of karst conduits affected by subterranean CO2 sources, 2000, Gabrovsek F, Menne B, Dreybrodt W,
In investigating early karstification of one-dimensional conduits by computer models, so far one has assumed that the CO2 content of the calcite aggressive water stems entirely from the surface. Subterranean sources of CO2, however, can rejuvenate the solutional power of water already close to equilibrium with respect to calcite, and boast dissolution rates. In a first scenario we have investigated the influence of a punctual source of CO2 as the most simple case of release of CO2 into a karstifiable fracture at some position KL from its entrance of the widening joint with length L, (K < 1). The results show that only a small increase of the p(CO2) in the solution to about 0.01 atm is sufficient to reduce the breakthrough times to about 0.3 with respect to the case, where no CO2 is delivered. Other sources of CO2 are due to the metabolic activity of microorganisms. The existence of such diverse subterraneous microbial life in karst systems demonstrated. Whether situated on the fissure surfaces or free floating in the karst water, one basic product of their metabolism is CO2. This contributes over the whole flow path to the p(CO2) of the karst water. Therefore in a second scenario we assumed a constant rate of CO2-input along parts of the fracture, as could be delivered by the activity of aerobic bacteria dwelling at its walls. Such a scenario also applies to an extended diffuse CO2 migration from volcanic activity deep underground. In this case drastic reductions of the breakthrough time by about one order of magnitude are observed. These reductions are enhanced when the fracture aperature width of the initial fracture decreases. The physicochemical mechanisms of enhancement of karstification are discussed in detail by considering the evolution of the fracture aperature width and of the dissolution rates in space and time

Karst aquifer evolution in fractured, porous rocks, 2000, Kaufmann G. , Braun J. ,
The evolution of flow in a fractured, porous karst aquifer is studied by means of the finite element method on a two-dimensional mesh of irregularly spaced nodal points. Flow within the karst aquifer is driven by surface recharge from the entire region, simulating a precipitation pattern, and is directed toward an entrenched river as a base level. During the early phase of karstification both the permeable rock matrix, modeled as triangular elements, and fractures within the rock matrix, modeled as linear elements, carry the now. As the fractures are enlarged with time by chemical dissolution within the system calcite-carbon dioxide-water, flow becomes more confined to the fractures. This selective enlargement of fractures increases the fracture conductivity by several orders of magnitude during the early phase of karstification. Thus flow characteristics change from more homogeneous, pore-controlled flow to strongly heterogeneous, fracture-controlled flow. We study several scenarios for pure limestone aquifers, mixed sandstone-limestone aquifers, and various surface recharge conditions as well as the effect of faulting on the aquifer evolution. Our results are sensitive to initial fracture width, faulting of the region, and recharge rate

Karst aquifer evolution in a changing water table environment - art. no. 1090, 2002, Kaufmann G. ,
[1] A vertical cross section through a karst aquifer is modeled by means of the finite element method to study the evolution of fractures and flow in the aquifer. The karst aquifer receives a constant recharge along the top boundary by precipitation and drains toward a resurgence assumed to be the base level in a valley. Flow is allowed both in the permeable rock matrix and the fracture network, and the fractures are enlarged with time by chemical dissolution. Hence during the early evolution of the karst aquifer the conductivity increases over several orders of magnitude, and the initially high water table drops to a steady state base level niveau. As a consequence, fractures above the final water table change from phreatic to vadose flow conditions. A systematic parameter study is carried out to investigate the aquifer evolution over a wide range of parameters, such as recharge rate, initial fracture width and density, and initial calcium concentration. The numerical models cover a wide range of drainage patterns, from phreatic water table caves to deep bathyphreatic caves to vadose river caves. The models suggest that a single theoretical approach is capable of explaining most common cave passage patterns

Le problme de louverture des vides initiaux pr-karstiques: cas de la dolomie siliceuse du Sous-Groupe de Malmani, Afrique du Sud., 2007, Martini J.
THE PROBLEM RELATED TO THE INITIAL SIZE OF THE PRE-KARSTIC VOIDS: THE CASE OF THE SILICEOUS DOLOSTONE OF THE MALMANI SUBGROUP, SOUTH AFRICA. The paper describes pre-karstic jointing in phreatic mazes developed in a Precambrian siliceous dolostone. The initial joint opening controling the speleogenesis can be measured in chert seams interstratified within the dolostone, since they are practically unaffected by karst dissolution. The measured openings generally vary from 0.3 to 5.0 mm, although values up to 30 mm have been recorded. The origin of the jointing has been linked to a Liassic tentional event which affected the entire African Austral sub-continent. This event is also associated with a major basaltic volcanism of the fissural type. Due to the exceptional nature of this tentionnal event, it appears difficult to compare the figures given here with the openings given by the authors from karst domains elsewhere in the world, who quote figures 1 to 2 magnitudes smaller.

Coupled Thermo-Hydro-Chemical (THC) Modeling of Hypogene Karst Evolution in a Prototype Mountain Hydrologic System, 2011, Chaudhuri A. , Rajaram H. , Viswanathan H. S. , Zyvoloski G.

Hypogene karst systems are believed to develop when water flowing upward against the geothermal gradient dissolves limestone as it cools. We present a comprehensive THC model incorporating time-evolving fluid flow, heat transfer, buoyancy effects, multi-component reactive transport and aperture/permeability change to investigate the origin of hypogene karst systems. Our model incorporates the temperature and pressure dependence of the solubility and dissolution kinetics of calcite. It also allows for rigorous representation of temperature-dependent fluid density and its influence on buoyancy forces at various stages of karstification. The model is applied to investigate karstification over geological time scales in a prototype mountain hydrologic system. In this system, a high water table maintained by mountain recharge, drives flow downward through the country rock and upward via a high-permeability fault/fracture. The pressure boundary conditions are maintained constant in time. The fluid flux through the fracture remains nearly constant even though the fracture aperture and permeability increase by dissolution, largely because the permeability of the country rock is not altered significantly due to slower dissolution rates. However, karstification by fracture dissolution is not impeded even though the fluid flux stays nearly constant. Forced and buoyant convection effects arise due to the increased permeability of the evolving fracture system. Since in reality the aperture varies significantly within the fracture plane, the initial fracture aperture is modeled as a heterogeneous random field. In such a heterogeneous aperture field, the water initially flows at a significant rate mainly through preferential flow paths connecting the relatively large aperture zones. Dissolution is more prominent at early time along these flow paths, and the aperture grows faster within these paths. With time, the aperture within small sub-regions of these preferential flow paths grows to a point where the permeability is large enough for the onset of buoyant convection. As a result, a multitude of buoyant convection cells form that take on a two-dimensional (2D) maze-like appearance, which could represent a 2D analog of the three-dimensional (3D) mazework pattern widely thought to be characteristic of hypogene cave systems. Although computational limitations limited us to 2D, we suggest that similar process interactions in a 3D network of fractures and faults could produce a 3D mazework.


Early-stage hypogene karstification in a mountain hydrologic system: A coupled thermohydrochemical model incorporating buoyant convection, 2013, Chaudhuri A. , Rajaram H. , Viswanathan H

The early stage of hypogene karstification is investigated using a coupled thermohydrochemical model of a mountain hydrologic system, in which water enters along a water table and descends to significant depth (_1 km) before ascending through a central high-permeability fracture. The model incorporates reactive alteration driven by dissolution/ precipitation of limestone in a carbonic acid system, due to both temperature- and pressuredependent solubility, and kinetics. Simulations were carried out for homogeneous and heterogeneous initial fracture aperture fields, using the FEHM (Finite Element Heat and Mass Transfer) code. Initially, retrograde solubility is the dominant mechanism of fracture aperture growth. As the fracture transmissivity increases, a critical Rayleigh number value is exceeded at some stage. Buoyant convection is then initiated and controls the evolution of the system thereafter. For an initially homogeneous fracture aperture field, deep well-organized buoyant convection rolls form. For initially heterogeneous aperture fields, preferential flow suppresses large buoyant convection rolls, although a large number of smaller rolls form. Even after the onset of buoyant convection, dissolution in the fracture is sustained along upward flow paths by retrograde solubility and by additional ‘‘mixing corrosion’’ effects closer to the surface. Aperture growth patterns in the fracture are very different from those observed in simulations of epigenic karst systems, and retain imprints of both buoyant convection and preferential flow. Both retrograde solubility and buoyant convection contribute to these differences. The paper demonstrates the potential value of coupled models as tools for understanding the evolution and behavior of hypogene karst systems.


Early-stage hypogene karstification in a mountain hydrologic system: A coupled thermohydrochemical model incorporating buoyant convection, 2013, Chaudhuri A. , Rajaram H. , Viswanathan H.

The early stage of hypogene karstification is investigated using a coupled
thermohydrochemical model of a mountain hydrologic system, in which water enters along a
water table and descends to significant depth (1 km) before ascending through a central
high-permeability fracture. The model incorporates reactive alteration driven by dissolution/
precipitation of limestone in a carbonic acid system, due to both temperature- and pressuredependent
solubility, and kinetics. Simulations were carried out for homogeneous and
heterogeneous initial fracture aperture fields, using the FEHM (Finite Element Heat and Mass
Transfer) code. Initially, retrograde solubility is the dominant mechanism of fracture aperture
growth. As the fracture transmissivity increases, a critical Rayleigh number value is exceeded
at some stage. Buoyant convection is then initiated and controls the evolution of the system
thereafter. For an initially homogeneous fracture aperture field, deep well-organized buoyant
convection rolls form. For initially heterogeneous aperture fields, preferential flow suppresses
large buoyant convection rolls, although a large number of smaller rolls form. Even after the
onset of buoyant convection, dissolution in the fracture is sustained along upward flow paths
by retrograde solubility and by additional ‘‘mixing corrosion’’ effects closer to the surface.
Aperture growth patterns in the fracture are very different from those observed in simulations
of epigenic karst systems, and retain imprints of both buoyant convection and preferential
flow. Both retrograde solubility and buoyant convection contribute to these differences. The
paper demonstrates the potential value of coupled models as tools for understanding the
evolution and behavior of hypogene karst systems.


Early-stage hypogene karstification in a mountain hydrologic system: A coupled thermohydrochemical model incorporating buoyant convection, 2013, Chaudhuri A. , Rajaram H. , Wiswanathan H.

The early stage of hypogene karstification is investigated using a coupled thermohydrochemical model of a mountain hydrologic system, in which water enters along a water table and descends to significant depth (_1 km) before ascending through a central high-permeability fracture. The model incorporates reactive alteration driven by dissolution/ precipitation of limestone in a carbonic acid system, due to both temperature- and pressuredependent solubility, and kinetics. Simulations were carried out for homogeneous and heterogeneous initial fracture aperture fields, using the FEHM (Finite Element Heat and Mass Transfer) code. Initially, retrograde solubility is the dominant mechanism of fracture aperture growth. As the fracture transmissivity increases, a critical Rayleigh number value is exceeded at some stage. Buoyant convection is then initiated and controls the evolution of the system thereafter. For an initially homogeneous fracture aperture field, deep well-organized buoyant convection rolls form. For initially heterogeneous aperture fields, preferential flow suppresses large buoyant convection rolls, although a large number of smaller rolls form. Even after the onset of buoyant convection, dissolution in the fracture is sustained along upward flow paths by retrograde solubility and by additional ‘‘mixing corrosion’’ effects closer to the surface. Aperture growth patterns in the fracture are very different from those observed in simulations of epigenic karst systems, and retain imprints of both buoyant convection and preferential flow. Both retrograde solubility and buoyant convection contribute to these differences. The paper demonstrates the potential value of coupled models as tools for understanding the evolution and behavior of hypogene karst systems.


Results 1 to 13 of 13
You probably didn't submit anything to search for