Search in KarstBase
![]() |
![]() |
First investigated on the ground in June 1972, the Nahanni karst of northern Canada is the most complex karst terrain yet reported from high latitudes. It is centered at 61°28' N, longitude 124°05' W and lies within the zone of discontinuous permafrost. Mean annual temperature is 24°F and mean total precipitation 22.3 inches. Principal karst forms are fracture-located karst streets and irregularly-shaped closed depression called karst platea which may be up to 600 feet in depth. Platea often contain karst towers which are residuals of wall recession. Vertical-walled pond dolines up to 120 feet deep are common in bare karst areas while subjacent karst collapse, subsidence and suffosion depressions occur on marginal shale- and drift-mantled surfaces. Three small poljes have been identified, two produced entirely by solution, the other a structural form. These are periodically inundated. There are several peripheral fluvial canyons up to 3,000 feet deep that are blocked by glacial drift and which presently drain underground. Similarity in the hydrogeological properties of Nahanni Formation limestones at a variety of scales has led to the development of morphologically-identical karst forms which range in size from inches up to hundreds of feet. Furthermore, many of these landforms are part of a developmental sequence that at one scale links vertical-walled dolines, karst streets, platea and poljes; and at another links solution pits, grikes and joint hollows on limestone pavements. The evidence suggests that poljes form by the coalescence of dolines and uvalas just as Cvijic suggested in 1918. In attempting to explain the almost "tropical" nature of the sub-arctic Nahanni karst landform assemblage, a number of facts are of importance.
(a) The Nahanni Formation limestones have been highly warped and intensively fractures during the past one million years. Open fractures have encouraged karstification by allowing easy movement of water underground. Warping has provided the relief necessary for the development of solutional forms with a distinct vertical component.
(b) The karst can not be considered relict because it was glaciated during the Pleistocene. In addition the hydrological activity in it today is comparable with that in many humid tropical karst areas.
(c) Solutional denudation rates governed by aspects of surficial and bedrock geology may in some localized areas be equivalent to rates in humid tropical carbonate regions.
(d) At present rates, the most highly developed forms could have been produced within the last 200,000 years and because there is evidence to indicate that the karst may not have been glaciated for up to 250,000 years, such a period has been available for solutional development.
Because the Nahanni region has not been glaciated for an extremely long period, it may be one of only a few high-latitude carbonate terrains that have had time to develop fully. Its very existence questions the validity of the concept that the intensity and direction of karst development is climate-controlled. In the Nahanni at least, the structural and lithological properties of the host limestone appear to have been of greater importance. The labyrinth karst type present in regions of humid-tropical to sub-arctic climate, is an outstanding example of a structurally-controlled karst landscape. It may well be that the same controls also influence the distributions of other karst types.
The Appalachian fold belt system in Newfoundland is divided into three tectonic divisions: Western Platform; Central Mobile Belt; Avalon Platform Rocks of the Western Platform range in age from Precambrian to Carboniferous. Major karst areas are found there is Ordovician and Carboniferous rocks. Karst features of the study area (Goose Arm to Bonne Bay Big Pond) are in the Ordovician carbonates of the undivided St. George and Table Head Formations, covering a few hundred square kilometers. Features include karren, sinkholes, sinking streams, and karst springs, caves and other solutional and collapse features.
In the study area multiple fold and faulting episodes complicate the geology. Extensive and probably repeated glaciations have produced rugged terrane with U-shaped valleys and as much as 300m relief on the carbonates. There is variable but thick till cover. A class or classes of ice-scoured closed depressions with internal drainage are recognized. Postglacial karst forms are limited to varieties of karren (mainly littoral), small sinkholes, and cave systems that are inaccessively small in most instances. Distribution of all karst features is highly irregular.
Hydrologic patterns follow fluvial, fluviokarstic and holokarstic drainage. Large number of sinking ponds have seasonal overflow channels. The ground water drainage routes are generally short and shallow, with varied hydraulic gradients. Few instances of ground water route integration to regional springs is found.
The water chemistry of the area displays a tight normal distribution of hardness. This is attributed to the ponding effect. Seasonal trends show an overall increase in total hardness and other parameters, with some ponds showing linear increases and others cyclic variations.
Karst type and distribution is complex and irregular, but both glaciokarstic and karstiglacial development is present. The majority of karst forms point to karstiglacial development where previous karst forms have been modified by ice. Karstification is controlled by geology, rock lithology, hydraulic gradients and glacial scour and infill. Karstic processes continue to operate today, modifying the scoured basins and creating new karst forms.
The use of multiple regression analysis is shown to overcome current limitations in availability of climatic temperature data for caving sites in the Central and Southern Tablelands of New South Wales. The developed equations are used to calculate climatic data for Jenolan, Wellington, and Oberon which agree well with recorded data at these sites. The equations are also used to calculate data for six major caving areas in New South Wales, including the tourist areas Wombeyan and Yarrangobilly and frequently visited areas such as Bungonia and Wee Jasper.
Although Australia is limited in karst areas by world standards, the extensive areas of aeolian calcarenite (dune limestone) are often ignored by cavers. This paper describes the distribution and characteristics of aeolian calcarenite karst in Australia and discusses its caving potential.
Description
Prepared by some of the world's leading experts in the field, this book is the first summarizing work on the origin, importance and exploitation of paleokarst. It offers an extensive regional survey, mainly concerning the Northern Hemisphere, as well as a thorough analysis of the problems of research into paleokarst phenomena, with particular emphasis on theoretical contributions and practical exploitation. By concentrating on phenomena which have appeared in the course of geological history, the book represents a substantial development in the general theory of paleokarst and demonstrates the advantages of a comprehensive approach to the problem. Considerable emphasis is put on the economic importance of paleokarst phenomena, from the point of view of exploiting significant deposits of mineral raw materials, as well as from a civil engineering and hydrological point of view. Since the publication deals with a boundary scientific discipline, it is intended for specialists from various branches of science: geologists, paleontologists, economic geologists, geographers, mining engineers and hydrogeologists.
Contents
List of Contributors. Foreword.
Part I. Introduction.
Introduction (P. Bosák et al.). Paleokarst as a problem (J. Głazek, P. Bosák, D.C. Ford). Terminology (P. Bosák, D.C. Ford, J. Głazek).
Part II. Regional Review.
Paleokarst of Belgium (Y. Quinif). Paleokarst of Britain (T.D. Ford). Paleokarst of Norway (S.-E. Lauritzen). Paleokarst of Poland (J. Głazek). Paleokarst of Czechoslovakia (P. Bosák, I. Horáček, V. Panoš). Paleokarst of Hungary (G. Bárdossy, L. Kordos). Hydrothermal paleokarst of Hungary (P. Müller). Paleokarst of Italy. Selected examples from Cambrian to Miocene (M. Boni, B. D'Argenio). Paleokarst-related ore deposits of the Maghreb, North Africa (Y. Fuchs, B. Touahri). Paleokarst of Yugoslavia (D. Gavrilović). Paleokarst of Bulgaria (I. Stanev, S. Trashliev). Paleokarst of Romania (M. Bleahu). Paleokarst of the Union of Soviet Socialist Republics (R.A. Tsykin). Paleokarst of China (Zhang Shouyue). Paleokarst of Canada (D.C. Ford). Paleokarst of the United States (M.V. Palmer, A.N. Palmer).
Part III. Mineral Deposits Connected With Karst.
An introduction to karst-related mineral deposits (P. Bosák). Pb-Zn ores (S. Dżułyński, M. Sass-Gustkiewicz). Bauxites (G. Bárdossy). Iron ore deposits in paleokarst (G. Bárdossy, Y. Fuchs, J. Głazek). Clays and sands in paleokarst (P. Bosák). The oceanic karst: modern bauxite and phosphate ore deposits on the high carbonate islands (so-called ``Uplifted Atolls'') of the Pacific Ocean (F.G. Bourrouilh-le Jan). Paleokarst-related uranium deposits (Y. Fuchs).
Part IV. Hydrogeology and Engineering Hazards in Paleokarst Areas.
Paleokarst as an important hydrogeological factor (J. Zötl). Hydrogeological problems of opencast and underground mining of mineral deposits encountered during their exploration, development and exploitation stages (P. Bosák). Hydrogeological problems of the Cracow-Silesia Zn-Pb ore deposits (Z. Wilk). Hydrogeological problems of Hungarian bauxite and coal deposits (T. Böcker, B. Vizy). Paleokarst in civil engineering (A. Eraso). Interaction between engineering and environment in the presence of paleokarst: some case histories (J. Głazek).
Part V. Paleokarst as a Scientific Subject.
Special characteristics of paleokarst studies (I. Horáček, P. Bosák). Tectonic conditions for karst origin and preservation (J. Głazek). Problems of the origin and fossilization of karst forms (P. Bosák). Biostratigraphic investigations in paleokarst (I. Horáček, L. Kordos).
Part VI. Conclusions. Part VII. References. Part VIII. Indexes.
Author Index. Geographical Index. Subject Index.
Bibliographic & ordering Information
Hardbound, ISBN: 0-444-98874-2, 726 pages, publication date: 1989
Imprint: ELSEVIER
![]() |
![]() |