Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That cementing is see grouting.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for late glacial (Keyword) returned 16 results for the whole karstbase:
Showing 1 to 15 of 16
Controversy over the great flood hypotheses in the Black Sea in light of geological, paleontological, and archaeological evidence, , Yankohombach Valentina, Gilbert Allan S. , Dolukhanov Pavel,
Legends describing a Great Flood are found in the narratives of several world religions, and the biblical account of Noah's Flood is the surviving heir to several versions of the ancient Mesopotamian Flood Myth. Recently, the story of the biblical deluge was connected to the Black Sea, together with the suggestion that the story's pre-Mesopotamian origins might be found in the Pontic basin [Ryan, W.B.F., Pitman, III, W.C., 1998. Noah's Flood: The New Scientific Discoveries About the Event That Changed History. Simon and Schuster, New York]. Based on the significance of this flood epic in the Judeo-Christian tradition, popular interest surged following publication of the idea.Currently, two Great Flood scenarios have been proposed for the Black Sea: (1) an Early Holocene event caused by catastrophic Mediterranean inflow at 7.2 ky BP (initial hypothesis of [Ryan et al., 1997. An abrupt drowning of the Black Sea shelf. Marine Geology 138, 119-126]) or 8.4 ky BP (modified hypothesis of [Ryan et al., 2003. Catastrophic flooding of the Black Sea. Annual Review of Earth and Planetary Science 31, 525-554.); and (2) a Late Pleistocene event brought on by Caspian influx between 16 and 13 ky BP [Chepalyga, A.L., 2003. Late glacial Great Flood in the Black Sea and Caspian Sea. GSA Annual Meeting and Exposition, 2-5 November 2003, Seattle, USA, p. 460]. Both hypotheses claim that the massive inundations of the Black Sea basin and ensuing large-scale environmental changes had a profound impact on prehistoric human societies of the surrounding areas, and both propose that the event formed the basis for the biblical Great Flood legend.This paper attempts to determine whether the preponderance of existing evidence sustains support for these Great Floods in the evolution of the Black Sea. Based upon established geological and paleontological data, it finds that the Late Pleistocene inundation was intense and substantial whereas the Early Holocene sea-level rise was not. Between 16 and 13 ky BP, the Late Neoeuxinian lake (the Late Pleistocene water body in the Pontic basin pre-dating the Black Sea) increased rapidly from ~-14 to -50 m (below the present level of the Black Sea), then rose gradually to ~-20 m by about 11 ky BP. At 11-10 ky BP (the Younger Dryas), it dropped to ~-50 m. When the Black Sea re-connected with the Sea of Marmara at about 9.5 ky BP, inflowing Mediterranean water increased the Black Sea level very gradually up to ~-20 m, and in so doing, it raised the salinity of the basin and brought in the first wave of Mediterranean immigrants. These data indicate no major drawdown of the Black Sea after the Younger Dryas, and they do not provide evidence for any catastrophic flooding of the Black Sea in the Early Holocene.In addition, available archaeological and paleoenvironmental evidence from the Pontic region reveal no recognizable changes in population dynamics between 14 and 6 ky BP that could be linked to an inundation of large magnitude [Dolukhanov, P., Shilik, K., 2006. Environment, sea-level changes, and human migrations in the northern Pontic area during late Pleistocene and Holocene times. In: Yanko-Hombach, V., Gilbert, A.S., Panin, N., Dolukhanov, P.M. (Eds.), The Black Sea Flood Question: Changes in Coastline, Climate, and Human Settlement. Springer, Dordrecht, pp. 297-318; Stanko, V.N., 2006. Fluctuations in the level of the Black Sea and Mesolithic settlement of the northern Pontic area. In: Yanko-Hombach, V., Gilbert, A.S., Panin, N., Dolukhanov, P.M. (Eds.), The Black Sea Flood Question: Changes in Coastline, Climate, and Human Settlement. Springer, Dordrecht, pp. 371-385]. More specifically, Mesolithic and early Neolithic archaeological data in southeastern Europe and Ukraine give no indications of shifts in human subsistence or other behavior at the time of the proposed catastrophic flood in the Early Holocene [Anthony, D., 2006. Pontic-Caspian Mesolithic and Early Neolithic societies at the time of the Black Sea Flood: A small audience and small effects. In: Yanko-Hombach, V., Gilbert, A.S., Panin, N., Dolukhanov, P.M. (Eds.), The Black Sea Flood Question: Changes in Coastline, Climate, and Human Settlement. Springer, Dordrecht, pp. 345-370; Dergachev and Dolukhanov, 2006. The Neolithization of the North Pontic area and the Balkans in the context of the Black Sea Floods. In: Yanko-Hombach, V., Gilbert, A.S., Panin, N., Dolukhanov, P.M. (Eds.), The Black Sea Flood Question: Changes in Coastline, Climate, and Human Settlement. Springer, Dordrecht, pp. 489-514]

MINERALOGICAL AND SEDIMENTOLOGICAL INVESTIGATIONS OF A KARST FILLING IN THE COTENCHER CAVE (NEUCHATEL, JURA MOUNTAINS, SWITZERLAND), 1991, Adatte T, Rentzel P, Kubler B,
Mineralogical and sedimentological investigations were carried out on a karst filling located in the Cotencher cave (Neuchatel, Jura mountains, Switzerland). Radiometric and archeological dating give evidence for a rather incomplete record of the climatic history of the last glacial period. The major hiatus is situated in the younger Wurmian Pleniglacial age. Following the mineralogical and sedimentological results, it is possible to divide this profile in three parts. Late glacial and holocene sediments are characterized by fine morainic material, redeposited due to karst activity. The middle part (C-14: > 40 Ky BP), directly located below this hiatus shows a typical mineralogical association with the appearance of kaolinite and the persistance of the amphibole. This association is thought to be of eolian origin, older than the one described on the Jura mountains actual soils. This eolian sediment component was deposited after the early Wurmian Pleniglacial period. on the soils in the vicinity of the cave, and resedimented into the cave during the Wurmian Interpleniglacial. The lower part of the sediment column is characterized by a mineralogical association of kaolinite, mixed-layers and mica. Especially high amounts of kaolinite, possibly derived from old, probably Eemian mature soils give evidence for relatively warm climate with strong seasonal variations

Principal features of evaporite karst in Canada, 1997, Ford Dc,
Outcrops of sulfate arid mixed sulfate-carbonate rocks are common everywhere in Canada outside of the Shield province. Interstratal salt deposits are abundant in the interior lowlands. Types of karst that occur are determined chiefly by relations between (i) formation thickness and purity, (ii) regional topography and hydraulic gradient (iii) effects of receding Wisconsinan and earlier glaciers, and (iv) extent of modern permafrost. Exposures of bare karst on thick, pure sulfate formations are comparatively rare. Two principal landform types found on them are: (1) high-density polygonal karst (micro-sinkhole densities of thousands per km(2)); where hydraulic gradients are high and tills are thin; (2) hills and ridges of blocks uplifted and fractured by hydration (anhydrite) tectonics at paleo-icefront positions where hydraulic gradients are low. Deeply till-mantled karst dominated by collapse and suffosion sinkholes in the mantling detritus is well developed in southwestern Newfoundland and in central and northern Nova Scotia. Covered karst is abundant on sulfates conformably overlain by carbonate br elastic strata; collapse sinkholes ale the principal landform. Very large breccia pipes (up to 25 x 15 km) ale associated with deep subrosion of salt during glacier recessions. Syngenetic breccia karst is a fourth, distinct category created in some formations of thin, interbedded dolostones and sulfates. Where these are exposed td high hydraulic gradients, deep calcite-cemented breccias were formed in a first generation, upon which sinkhole and pinnacle karsts and dissolution drape topographies were able to develop rapidly in late-glacial and post-glacial conditions

A late Pleistocene ceiling collapse in Bogus Cave, Jones County, Iowa: A potential relationship to coeval accelerated mass wasting events across the central Midwest, 2002, Josephs, R. L.
A thick accumulation of boulder-size dolostone blocks, the result of one or more episodes of ceiling collapse, was encountered during geoarchaeological excavations in the front room of Bogus Cave, east-central Iowa. The rockfall layer was buried by a veneer of Holocene sediments that contained prehistoric artifacts dating to the Woodland Period (2500 - 1000 yr BP). An AMS 14C age of 17,260 120 yr BP, obtained from a caribou (Rangifer tarandus) mandible found wedged among the boulders, dates the collapse near the close of the last glacial maximum, a time when the projected mean annual temperature for this area was at least 14C lower than at present. Paleoenvironmental evidence based on ?13C values from select vertebrate remains and their encompassing sediment, together with a uranium series age of 16,900 4800 yr BP from a stalagmite formed atop one of the boulders, strongly support a late Wisconsinan age for the collapse. The episode (or episodes) of collapse appears to be the result of cryoclastic processes associated with late glacial conditions and the onset of accelerated mass wasting that has been previously documented across the central Midwest

Ochtina Aragonite Cave (Western Carpathians, Slovakia): Morphology, mineralogy of the fill and genesis, 2002, Bosak P, Bella P, Cilek V, Ford Dc, Hercman H, Kadlec J, Osborne A, Pruner P,
Ochtina Aragonite Cave is a 300 m long cryptokarstic cavity with simple linear sections linked to a geometrically irregular spongework labyrinth. The metalimestones, partly metasomatically altered to ankerite and siderite, occur as isolated lenses in insoluble rocks. Oxygen-enriched meteoric water seeping along the faults caused siderite/ankerite weathering and transformation to ochres that were later removed by mechanical erosion. Corrosion was enhanced by sulphide weathering of gangue minerals and by carbon dioxide released from decomposition of siderite/ankerite. The initial phreatic speleogens, older than 780 ka, were created by dissolution in density-derived convectional cellular circulation conditions of very slow flow. Thermohaline convection cells operating in the flooded cave might also have influenced its morphology. Later vadose corrosional events have altered the original form to a large extent. Water levels have fluctuated many times during its history as the cave filled during wet periods and then slowly drained. Mn-rich loams with Ni-bearing asbolane and bimessite were formed by microbial precipitation in the ponds remaining after the floods. Allophane was produced in the acidic environment of sulphide weathering. La-Nd-phosphate and REE enriched Mn-oxide precipitated on geochemical barriers in the asbolane layers. Ochres containing about 50 wt.% of water influence the cave microclimate and the precipitation of secondary aragonite. An oldest aragonite generation is preserved as corroded relics in ceiling niches truncated by corrosional bevels. Thermal ionisation mass spectrometry and alpha counting U series dating has yielded ages of about 500-450 and 138-121 ka, indicating that there have been several episodes of deposition, occurring during Quaternary warm periods (Elsterian 1/2, Eemian). Spiral and acicular forms representing a second generation began to be deposited in Late Glacial (14 ka - Allerod) times. The youngest aragonite, frostwork, continues to be deposited today. Both of the, younger generations have similar isotopic compositions, indicating that they originated in conditions very similar, or identical, to those found at present in the cave

Soil types and eolian dust in high-mountainous karst of the Northern Calcareous Alps (Zugspitzplatt, Wetterstein Mountains, Germany), 2003, Kufmann C. ,
This, study deals with the soil formation on pure limestone in the high-mountainous karst of Wetterstein Mountains (Northern Calcareous Alps). The study area in detail covers the alpine (2000 to 2350 in) and the subnivale zone (2350 to 2600 in) of Zugspitzplatt, a tertiary paleosurface situated next to the highest summit of Germany (Zugspitze 2963 in). The formation of autochthonous soils is determined by the following parameters: uniform geology and geochemistry of Triassic limestone (CaCO3 MgCO3 greater than or equal to 98%), variable substrata (solid rock, debris, local moraine), hypsometric pattern of vegetation modified by microclimate and aspect, variety of micro-environments in karst relief. In the subnivale zone, only leptosols (lithic, skeletic) and regosols (calcaric, humic) occur, whereas in the alpine zone different stages of folic histosols and rendzic leptosols prevail due to the diversity of vegetation. The purity of limestone prevents a distinct contribution of residues to soil formation. Instead of expected A-B-C profiles, the residues are mixed with organic matter of folic horizons (O-OB-C). Only in karst depressions or on local moraines small Bt horizons (2 to 5 cm) occur. They mark a developed stage of folic histosol (O-OB-Bt-C) representing the climax of autochthonous mineral soil genesis in the study area. Special features are brown deposits (mean thickness 30 cm) covering large parts of the alpine zone. On the basis of mineralogical (X-ray diffraction, heavy minerals) and pedological data (grain size, soil chemistry), eolian origin is indicated. The resulting soils are classified as loess loam-like cambisols (Ah-Bw-2(Bt)-2C) and are related to late glacial loess deposition (Egesen-Stade of Younger Dryas). The abundance of mica and silt in the surface layers and the grain size distribution of snow dust samples prove that dust influx by southerly winds is still continuing. The major sources for both late glacial and present-day dust are magmatic and metamorphic rock formations of the Central Alps. Additionally, local dust transport from adjacent outcrops of Jurassic and Lower Cretaceous sediments is evident. (C) 2003 Elsevier Science B.V. All rights reserved

A Late-glacial and Holocene record of climatic change from a Swiss peat humification profile, 2004, Roosbarraclough Fiona, Van Der Knaap W. O. , Van Leeuwen J. F. N. , Shotyk W. ,
Colorimetric measurements of alkaline extracts from two Swiss peat cores have provided a complete 14500-year-long record of peat humification, a proxy of effective precipitation. Peat from the cold Younger Dryas (11050-9550 cal. bc) was well preserved despite low levels of precipitation. A particularly dry period, peaking at c. 7100 cal. bc, is indicated by well-decomposed peat. Peat from c. 6750-4250 cal. bc shows a low degree of decomposition, indicating a wet bog surface despite relatively warm temperatures and therefore indicating high levels of precipitation. A sharp transition to higher levels of decomposition c. 4450-3750 cal. bc indicates a major transition to a drier bog surface. Subsequently, peat humification generally decreases towards the end of the deeper profile (c. cal. ad 1050), indicating a gradual return to wetter conditions. This gradual decrease is punctuated by periods of particularly low humification which appear to be due to shifts to higher levels of effective precipitation from c. 2500 to 1350 cal. bc, c. 1050 to 550 cal. bc, centered around 150 cal. bc, and from c. cal. ad 550 onwards. Anthropogenic influences appear to have affected peat humification at the site at least since the Middle Ages. This study indicates that humification in colder regions/time periods could be more affected by temperature than precipitation and vice versa

Ochtin Aragonite Cave (Slovakia): morphology, mineralogy and genesis, 2005, Bosk P. , Bella P. , Cilek V. , Ford D. C. , Hercman H. , Kadlec J. , Osborne A. , Pruner P. ,

Ochtiná Aragonite Cave is a 300 m long cryptokarstic cavity with simple linear sections linked to a geometrically irregular spongework labyrinth. The limestones, partly metasomatically altered to ankerite and siderite, occur as lenses in insoluble rocks. Oxygen-enriched meteoric water seeping along the faults caused siderite/ankerite weathering and transformation to ochres that were later removed by mechanical erosion. Corrosion was enhanced by sulphide weathering of gangue minerals and by carbon dioxide released from decomposition of siderite/ankerite. The initial phreatic speleogens, older than 780 ka, were created by dissolution in density-derived convectional cellular circulation conditions of very slow flow. Thermohaline convection cells operating in the flooded cave might also have influenced its morphology. Later vadose corrosional events have altered the original form to a large extent. Water levels have fluctuated many times during its history as the cave filled during wet periods and then slowly drained.
Mn-rich loams with Ni-bearing asbolane and birnessite were formed by microbial precipitation in the ponds remaining after the floods. Allophane was produced in the acidic environment of sulphide weathering. La-Nd-phosphate and REE enriched Mn-oxide precipitated on geochemical barriers in the asbolane layers. Ochres containing about 50 wt.% of water influence the cave microclimate and the precipitation of secondary aragonite. An oldest aragonite generation is preserved as corroded relics in ceiling niches truncated by corrosional bevels. TIMS and alpha counting U series dating has yielded ages of about 500-450 and 138-121 ka, indicating that there have been several episodes of deposition, occurring during Quaternary warm periods (Elsterian 1/2, Eemian). Spiral and acicular forms representing a second generation began to be deposited in Late Glacial (14 ka – Alleröd) times. The youngest aragonite, frostwork, continues to be deposited today. Both of the younger generations have similar isotopic compositions, indicating that they originated in conditions very similar, or identical, to those found at present in the cave.


Late glacial to Holocene climate and sedimentation history in the NW Black Sea, 2005, Bahr A, Lamy F, Arz H, Kuhlmann H, Wefer G,
Gravity cores from the continental slope in the northwestern Black Sea were studied using high-resolution stable isotope, grain size and XRF-scanning data. The measurements provide a 30 000 years AMS 14C-dated record of variations in the hydrological regime of the Black Sea and give insight into changing paleoenvironments in the surrounding areas. Stable climatic conditions during the Last Glacial Maximum were followed by a series of meltwater pulses most likely originating from the Scandinavian ice sheet between 18 000 and 15 500 yr BP.1 This meltwater input rose the level of the Caspian Sea to a point that Caspian water could spill into the Black Sea via the Manych-depression north of the Caucasian mountains. High-frequency oscillations in the XRF-data during this period suggest a probable link to the arctic climate regime. Later, during the Bolling/Allerod and the early Holocene, prevailing high temperatures led to authigenic calcite precipitation through increased phytoplankton activity, interrupted by the Younger Dryas and the '8200 yr BP cold event' with dominant clastic sedimentation

Stable isotope investigations on speleothems from different cave systems in Germany, 2005, Nordhoff, P.

Seven speleothems from six independent cave systems in Germany were investigated on their suitability as paleoclimatic archives. The caves are located in the Jurassic Limestones of the Swabian/Franconian Alb (southern Germany) and in a small-scale Devonian (reef) complex of the Harz Mountains (northern Germany). Based on the chronological control using 234U/230Th (TIMS) ages, δ18O/δ13C timeseries of the speleothems were established and related to known paleoclimatic events.
Results of the present-day assessment of the cave systems demonstrated that the cave temperature responses; the stable isotopic abundances of the dripwater, and present-day cave calcites reflect mean annual surface air temperatures as well as established isotopic equilibrium conditions during cave calcite precipitation. However, existing biases have been monitored but most of them may be deduced to anthropogenic influences like mining operations (Zaininger-Cave, Swabian Alb) or showcave business (Hermann’s- and Baumann’s-Cave, Harz Mountains). Although the scenarios leave partially an imprint on present-day spelean calcites, like the indicated non-equilibrium conditions at the Zaininger-Cave, their temporal imprint is restricted very much to the last couple of decennial years and thus assumed not to influence the paleorecords at all. Since the δ18O compositions of present-day calcite precipitates are primarily controlled by temperature, the sites may thus be suitable for paleoclimatic investigations from a today perspective.
Since the paleorecords of the Hermann’s- and Baumann’s-Cave stalagmites (Harz Mountains) display ages, which are not in chronological order, a construction of timeseries was not possible.
Past stable isotopic equilibrium conditions of the remaining paleorecords were verified using the single layer “Hendy-Test” as well as δ18O/δ13C regression analyzes of the subsample profiles. Late Pleistocene growth periods were found in the Paleocave Hunas Stalagmite (79373 ± 8237 to 76872 ± 9686 a. B.P.; Franconian Alb) and the Cave Hintere Kohlhalde Stalagmite (44158 ± 3329 to 2709 ± 303 a B.P.; Swabian Alb). Unexpectedly, the latter displays no macroscopic visible growth hiatuses and was deposited continuously during the “cold” OIS 2 and the LGM. This has been interpreted owing to the special conditions and mode of vadose water circulation of a discontinuous permafrost zone which may have prevailed on the Swabian Alb during that time. Here, just like for the subsequent periods, principal changes in mean δ18O/δ13C and linear extension rates of the timeseries echoed the Boelling/Alleroed Interstadial and Younger Dryas cold phase. The comparison of coeval timeseries between the Cave Hintere Kohlhalde stalagmite, the Zaininger-Cave stalactite (both Swabian Alb) and the Mühlbach-Cave stalagmite (Franconian Alb) reveal some analogy such as the transitions from the Late Glacial to the Early Holocene between 10513 and 10587 cal. a B.P. for the Swabian Alb and 10227 cal. a B.P. for the Franconian Alb; the anomaly around 8.2 ka B.P. recorded in the Zaininger- and Mühlbach-Cave; and a climatic deterioration which leads to an almost simultaneous cessation of speleothem growth on the Swabian/Franconian Alb between 2.5 and 2.8 ka B.P.
Important changes of the stable isotopic composition occur together with changes in growth rate and in the macroscopic aspect of the investigated speleothems. This confirms that general climatic and environmental parameters control the recorded variations and that they are not owing to very local factors.


U-series dating and taphonomy of Quaternary vertebrates from Brazilian caves, 2006, Auler As, Pilo Lb, Smart Pl, Wang X, Hoffmann D, Richards Da, Edwards Rl, Neves Wa, Cheng H,
The geochronology and taphonomy of internationally important fossil bearing cave deposits were studied, both in the semi-arid Northern Bahia area and the subtropical southeastern Lagoa Santa area of Brazil. Taphonomic analysis suggests that the processes responsible for bone accumulation in the Brazilian caves vary between sites, and taphonomic bias can therefore be significant in causing differences in faunal composition. In the Toca da Boa Vista caves the presence of single articulated skeletons, and the entrance-related distribution indicate that random penetration of animals is the main mechanism of fossil accumulation, a process that biases the assemblage to smaller species, and takes place over extended time periods. In nearby Toca dos Ossos cave transport by runoff in the cave river is predominant, and biases the fauna remains to larger more robust bones and species. Deposition probably also occurred only at times of enhanced runoff giving a more contemporaneous assemblage. Similar processes were responsible for emplacement of the copious fossil remains in the more humid Lagoa Santa area, where terrigenous fossil deposits are found intercalated by massive speleothem calcite layers. In this area runoff under a drier climate probably accounts for the sediment emplacement inside caves. In both areas the mode of emplacement implies bias in the fossil record, resulting in fossil assemblages that do not mirror surface faunas, limiting palaeoenvironmental reconstruction.Mass spectrometric U-series analysis of speleothem calcite overlaying fossil remains gives minimum ages for fossil deposition. These ages confirm the previous view that many of the deposits derive from the late glacial, but also show that much older material (some > 350,000[no-break space]yr) is also present. The habitat requirements of critical fossil species such as bats and monkeys strongly suggest that they derive from much wetter periods when forest cover was present in the currently semi-arid Northern Bahia area. Taphonomy exerts a major control on the diversity and mode of emplacement of cave fossil deposits in eastern Brazil and thus detailed sedimentological and hydrological studies coupled with a sound geochronological approach are essential in quantifying the relative importance of each taphonomic processes before faunal and palaeoecological interpretations can be attempted

Neue Knochenfunde aus dem Moosschacht (2836/237) auf der Tanneben bei Semriach, Steiermark, 2007, Pacher, M.
Faunal remains from the Moosschacht collected in 2003 and 2004 are presented. Five mammalian species were identified but their chronological position remains unclear. Judging from their preservation, the bones are classified as fossil or subfossil remains. Evidence of row deer and the rather small size of the red deer bones point to an accumulation of the remains during a warm period after the Late Glacial Maximum, while marmot remains indicate a colder period of time.

Der Murmeltierschacht (2836/239) bei Semriach (Steiermark) und seine Knochenfunde, 2007, Kusch H. , Pacher M.
First results of scientific explorations in the recently discovered Murmeltierschacht (2836/239) are presented. At present the cave has a length of 23 m and reaches a depth of 9 m. Sandy sediments that nearly filled up all the chambers were partly removed. Mainly remains of marmots (Marmota marmota L.) were recovered within the sediment. The distribution pattern of the bones suggests that they were transported into the cave together with the water-lain sediment. A marmot bone yielded a conventional AMS radiocarbon age of 14,575 45 BP. The new marmot assemblage correlates both in terms of its chronology and metrical dimensions with numerous remains in the southeastern Alpine area. At the end of the Late Glacial Maximum and during the Late Glacial period Alpine marmot was a typical faunal element in the mountainous area near Graz and the adjacent basins.

Age frequency distribution and revised stable isotope curves for New Zealand speleothems: palaeoclimatic implications., 2010, Williams P. W. , Neil H. And Zhao Jx.
The occurrence of speleothems in New Zealand with reversed magnetism indicates that secondary calcite deposition in caves has occurred for more than 780 thousand years (ka). 394 uranium-series dates on 148 speleothems show that such deposition has taken place somewhere in the country with little interruption for more than 500 ka. A relative probability distribution of speleothem ages indicates that most growth occurred in mild, moist interglacial and interstadial intervals, a conclusion reinforced by comparing peaks and troughs in the distribution with time series curves of speleothem ?18O and ?13C values. The stable isotope time series were constructed using data from 15 speleothems from two different regions of the country. The greater the number of overlapping speleothem series (i.e. the greater the sample depth) for any one region, the more confidence is justified in considering the stacked record to be representative of the region. Revising and extending earlier work, composite records are produced for central-west North Island (CWNI) and north-west South Island (NWSI). Both demonstrate that over the last 15 ka the regions responded similarly to global climatic events, but that the North Island site was also influenced by the waxing and waning of regional subtropical marine influences that penetrated from the north but did not reach the higher latitudes of the South Island. Cooling marking the commencement of the last glacial maximum (LGM) was evident from about 28 ka. There was a mid-LGM interstadial at 23-21.7 ka and Termination 1 occurred around 18.1 ka. The glacial-interglacial transition was marked by a series of negative excursions in ?18O that coincide with dated recessional moraines in South Island glaciers. A late glacial cooling event, the NZ Late Glacial Reversal, occurred from 13.4-11.2 ka and this was followed by an early Holocene optimum at 10.8 ka. Comparison of ?18O records from NWSI and EPICA DML ice-core shows climatic events in New Zealand to lag those in Antarctica by several centuries to a thousand years. Waxing and waning of subantarctic and subtropical oceanic influences in the Tasman Sea are considered the immediate drivers of palaeoclimatic change.

Age frequency distribution and revised stable isotope curves for New Zealand speleothems: palaeoclimatic implication, 2010, Williams P. W. , Neil H. , Zhao Jx.

The occurrence of speleothems in New Zealand with reversed magnetism indicates that secondary calcite deposition in caves has occurred for more than 780 thousand years (ka). 394 uranium-series dates on 148 speleothems show that such deposition has taken place somewhere in the country with little interruption for more than 500 ka. A relative probability distribution of speleothem ages indicates that most growth occurred in mild, moist interglacial and interstadial intervals, a conclusion reinforced by comparing peaks and troughs in the distribution with time series curves of speleothem δ18O and δ13C values. The stable isotope time series were constructed using data from 15 speleothems from two different regions of the country. The greater the number of overlapping speleothem series (i.e. the greater the sample depth) for any one region, the more confidence is justified in considering the stacked record to be representative of the region. Revising and extending earlier work, composite records are produced for central-west North Island (CWNI) and north-west South Island (NWSI). Both demonstrate that over the last 15 ka the regions responded similarly to global climatic events, but that the North Island site was also influenced by the waxing and waning of regional subtropical marine influences that penetrated from the north but did not reach the higher latitudes of the South Island. Cooling marking the commencement of the last glacial maximum (LGM) was evident from about 28 ka. There was a mid-LGM interstadial at 23-21.7 ka and Termination 1 occurred around 18.1 ka. The glacial-interglacial transition was marked by a series of negative excursions in δ18O that coincide with dated recessional moraines in South Island glaciers. A late glacial cooling event, the NZ Late Glacial Reversal, occurred from 13.4-11.2 ka and this was followed by an early Holocene optimum at 10.8 ka. Comparison of δ18O records from NWSI and EPICA DML ice-core shows climatic events in New Zealand to lag those in Antarctica by several centuries to a thousand years. Waxing and waning of subantarctic and subtropical oceanic influences in the Tasman Sea are considered the immediate drivers of palaeoclimatic change.


Results 1 to 15 of 16
You probably didn't submit anything to search for