Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That firstkarren is (austrian.) see rillenkarren.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
Engineering challenges in Karst, Stevanović, Zoran; Milanović, Petar
See all featured articles
Featured articles from other Geoscience Journals
Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy), Dimuccio, L.A.; Rodrigues, N.; Larocca, F.; Pratas, J.; Amado, A.M.; Batista de Carvalho, L.A.
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
See all featured articles from other geoscience journals

Search in KarstBase

Your search for lenses (Keyword) returned 21 results for the whole karstbase:
Showing 1 to 15 of 21
A study of fresh water lens configuration in the Cayman Islands using resistivity methods, 1976, Bugg Sf, Lloyd Jw,
The problems of identifying the base of fresh water lenses in oceanic islands are discussed. A study carried out in the Cayman Islands is described in which the lens base is defined in relation to potable water standards and mapped using surface resistivity measurements with salinity profile controls in boreholes. Using depth-salinity ratios the piezometric surface is then determined. The technique is considered to provide a reliable cheap and rapid method of obtaining lens geometry in oceanic islands particularly where fairly homogeneous lithologies are present

Hydrogeological conditions in the Middle East, 1982, Burdon Dj,
The geology of Middle East is summarized under the subheadings: Precambrian basement, epicontinental sediments, geosynclinal and shelf deposits, Tertiary volcanics and Quaternary cover. The main tectonic episodes including epeirogenic movements, rifting and the Tertiary orogeny, are reviewed. The imposition of hydrometeorolocal and climatic conditions upon the regional geology provides the setting for the hydrogeological discussion. Five factors which influence infiltration to aquifers under conditions of low precipitation and high potential evaportranspiration are discussed. The predominance of fossil groundwater is the most striking hydrogeological phenomenon occurring on a regional scale in the Middle East. Its mode of formation during the pluvials is outlined and the isotopic evidence is reviewed. The main physical and chemical characteristics of fossil ground-waters are described. It is conservatively estimated that some 65 000 km3 of good- to medium-quality groundwater are stored in the great artesian basins of the Near East. These fossil ground-waters are a non-renewable natural resource. Current annual abstraction is, as yet, a small percentage of the total reserves but economic factors rather than the volume of reserves will determine the ultimate extent of their exploitation. The renewable groundwater resources of the Middle East tend, by comparison, to be of local rather than regional significance. Some originate outside the Middle East, coming in as surface flows in the Nile and Tigris-Euphrates and infiltrating into the sediments in and adjacent to the flood plains. Other renewable resources accumulate within the region where high precipitation and mountainous relief are associated. Such areas include the Djebel Akhdar of Cyrenacia, the Tertiary fold mountains from the Taurus through the Zagros to the Oman ranges, and the volcanic and basement highlands of Yemen, Asir and Ethiopa. Locally, in areas of lower precipitation, lenses of recent fresh groundwater float on regional more saline groundwater. In some areas subsurface flows towards and through wadi systems are also of importance

Shallow-marine carbonate facies and facies models, 1985, Tucker M. E. ,
Shallow-marine carbonate sediments occur in three settings: platforms, shelves and ramps. The facies patterns and sequences in these settings are distinctive. However, one type of setting can develop into another through sedimentational or tectonic processes and, in the geologic record, intermediate cases are common. Five major depositional mechanisms affect carbonate sediments, giving predictable facies sequences: (1) tidal flat progradation, (2) shelf-marginal reef progradation, (3) vertical accretion of subtidal carbonates, (4) migration of carbonate sand bodies and (5) resedimentation processes, especially shoreface sands to deeper subtidal environments by storms and off-shelf transport by slumps, debris flows and turbidity currents. Carbonate platforms are regionally extensive environments of shallow subtidal and intertidal sedimentation. Storms are the most important source of energy, moving sediment on to shoreline tidal flats, reworking shoreface sands and transporting them into areas of deeper water. Progradation of tidal flats, producing shallowing upward sequences is the dominant depositional process on platforms. Two basic types of tidal flat are distinguished: an active type, typical of shorelines of low sediment production rates and high meteorologic tidal range, characterized by tidal channels which rework the flats producing grainstone lenses and beds and shell lags, and prominent storm layers; and a passive type in areas of lower meteorologic tidal range and higher sediment production rates, characterized by an absence of channel deposits, much fenestral and cryptalgal peloidal micrite, few storm layers and possibly extensive mixing-zone dolomite. Fluctuations in sea-level strongly affect platform sedimentation. Shelves are relatively narrow depositional environments, characterized by a distinct break of slope at the shelf margin. Reefs and carbonate sand bodies typify the turbulent shelf margin and give way to a shelf lagoon, bordered by tidal flats and/or a beach-barrier system along the shoreline. Marginal reef complexes show a fore-reef--reef core--back reef facies arrangement, where there were organisms capable of producing a solid framework. There have been seven such phases through the Phanerozoic. Reef mounds, equivalent to modern patch reefs, are very variable in faunal composition, size and shape. They occur at shelf margins, but also within shelf lagoons and on platforms and ramps. Four stages of development can be distinguished, from little-solid reef with much skeletal debris through to an evolved reef-lagoon-debris halo system. Shelf-marginal carbonate sand bodies consist of skeletal and oolite grainstones. Windward, leeward and tide-dominated shelf margins have different types of carbonate sand body, giving distinctive facies models. Ramps slope gently from intertidal to basinal depths, with no major change in gradient. Nearshore, inner ramp carbonate sands of beach-barrier-tidal delta complexes and subtidal shoals give way to muddy sands and sandy muds of the outer ramp. The major depositional processes are seaward progradation of the inner sand belt and storm transport of shoreface sand out to the deep ramp. Most shallow-marine carbonate facies are represented throughout the geologic record. However, variations do occur and these are most clearly seen in shelf-margin facies, through the evolutionary pattern of frame-building organisms causing the erratic development of barrier reef complexes. There have been significant variations in the mineralogy of carbonate skeletons, ooids and syn-sedimentary cements through time, reflecting fluctuations in seawater chemistry, but the effect of these is largely in terms of diagenesis rather than facies

HYDROGEOLOGY OF GRAND CAYMAN, BRITISH-WEST-INDIES - A KARSTIC DOLOSTONE AQUIFER, 1992, Ng K. C. , Jones B. , Beswick R. ,
On Grand Cayman, freshwater bodies present in the Bluff Formation are typically small and occur as thin lenses floating on top of dense saline water. Evaluation of the water resource potential of these freshwater lenses is difficult because of their variable hydrological conditions, complex paleohydrogeology and aquifer heterogeneity. Secondary porosity created by preferential dissolution of aragonitic fossil components is common. Open fissures and joints developed under tectonic stress and karst development associated with sea-level fluctuations are, however, the two most important causes of porosity and permeability in the aquifers on Grand Cayman. Fracture and karst porosity control the lens occurrence by: (1) acting as avenues for the intrusion of seawater or upward migration of saline water; (2) acting as recharge focal points; (3) enhancing hydrodynamic dispersion; (4) defining lens geometry; (5) facilitating carbonate dissolution along joints and fissures. A clear understanding of the hydrological and geological conditions is important in developing small lenses in a setting similar to that on Grand Cayman. This pragmatic approach can help identify the optimum location of the well field and avoid areas particularly susceptible to saline water intrusion

HYDROGEOCHEMISTRY OF GRAND-CAYMAN, BRITISH-WEST-INDIES - IMPLICATIONS FOR CARBONATE DIAGENETIC STUDIES, 1995, Ng K. C. , Jones B. ,
Groundwater in the dolostone aquifers of the Bluff Group (Oligocene-Miocene) on Grand Cayman is divided into fresh, lightly and highly brackish, and saline (Type I and II) zones according to chemical characteristics that were determined during a 3 year (1985-1988) monitoring program. Brackish and Type I saline waters display the greatest variation in chemical properties whereas the Type II saline water has the most stable chemical characteristics. Most groundwaters from these dolostone aquifers are thermodynamically capable of precipitating calcite and/or dolomite. The saturation indices for these minerals, however, vary through time and space even in the context of small water lens. Simple mixing of fresh and sea water cannot explain the chemistry of the water found in the joint and karst controlled dolostone aquifers of Grand Cayman. Deviation from a simple mixing model is due to variations caused by tidal fluctuation, the rate of rain water recharge, influx of Ca-rich groundwater from the surrounding limestone aquifers, influx of CO2-rich surface water from sinkholes and swamps, and water-rock interactions (dissolution and precipitation of calcite and dolomite). Sustained groundwater abstraction from a lens can significantly alter the hydrochemistry of the water lens. This suggests that hydrochemical characterization of small fresh water lenses, like those on Grand Cayman, cannot be based on spot or short-term sampling. Interpretation of such fluids in terms of calcite-dolomite precipitation and/or dissolution must be treated with caution if the data base has not been derived from long-term monitoring

Dinosaurs and other tetrapods in an Early Cretaceous bauxite-filled fissure, northwestern Romania, 1997, Benton Mj, Cook E, Grigorescu D, Popa E, Tallodi E,
The bauxite mine at Cornet near Oradea in northwestern Romania produced thousands of bones in an excavation in 1978, mainly from ornithopod dinosaurs and rarer pterosaurs. Bird specimens reported previously from this fauna are equivocal. The fossils are disarticulated bones in good condition which occur highly concentrated in lenses within bauxite clays, which are dated as Berriasian (earliest Cretaceous). The bauxite represents detrital material washed into deep fissures and caves formed within a karst of uplifted Tithonian (latest Jurassic) marine limestones. The bones are generally uniform in size and shape, and they are abraded, evidence for considerable transport and for winnowing of the deposit. The area was one of several islands on the northern shore of Tethys, and it was inundated by the sea later in the Early Cretaceous. There is evidence for insular adaptations in the dinosaur faunas. The ornithopod dinosaurs may include several taxa, but they are smaller on average than an assemblage of typical Wealden ornithopods, perhaps because of dwarfing on the island. In addition, sauropods are absent and theropods are barely represented in the fauna. The fauna is geographically significant since it shows relationships with western Europe and with Asia

Growth and demise of an Archean carbonate platform, Steep Rock Lake, Ontario, Canada, 1999, Kusky T. P. , Hudleston P. J. ,
The Steep Rock Group of northwest Ontario's Wabigoon subprovince is one of the world's thickest Archean carbonate platform successions. It was deposited unconformably over a 3001-2928 Ma gneissic terrane, and contains a remarkable group of biogenic and oolitic limestones, dolostones, micrites, and karat breccias capped by a thick paleosol developed between and over karst towers. The presence of aragonite fans, herringbone calcite, and rare gypsum molds suggests that the carbonate platform experienced at least local anaerobic and hypersaline depositional conditions. This sequence shows that a combination of chemical and biological processes was able to build a carbonate platform 500 m thick by 3 billion years ago. The carbonate platform is structurally overlain by a mixture of complexly deformed rocks of the Dismal Ashrock forming a melange with blocks of ultramafic volcaniclastic rocks, mafic volcanics, carbonate, tonalite, lenses of Fe-ore rock, and metasedimentary rocks, in a shaly, serpentinitic, and fragmental ultramafic volcaniclastic matrix. The melange shows evidence of polyphase deformation, with early high-strain fabrics formed at amphibolite facies, and later superimposed brittle fabrics related to the final emplacement of the melange over the carbonate platform. An amphibolite- through greenschist-grade shear zone marks the upper contact of the melange with overlying mafic volcanic and tuffaceous rocks of the ca. 2932 Ma Witch Bay allochthon, interpreted as a primitive island are sequence. We suggest an evolutionary model for the area that begins with rifting of an are sequence (Marmion Complex of the Wabigoon are) that initiated subsidence and sedimentation on the Steep Rock platform and its correlatives that extend for a restored strike length exceeding 1000 km. Shallow water carbonate sedimentation continued until the platform was uplifted on the flanks of a flexural bulge related to the approach of the Witch Bay allochthon, representing collision of the rifted are margin of the Wabigoon subprovince with the Witch Bay are. Melange of the Dismal Ashrock was formed as off-axis volcanic rocks were accreted to the base of the Witch Bay allochthon prior to its collision with the Steep Rock platform

Speleogenesis in quartzites from Southeastern Minas Gerais, Brazil, 2000, Correa Neto A. V.
Speleogenesis in quartzites from the Andrelandia Gp. (Proterozoic) began with a long initial period of base level stability when silica solution from quartz and leaching from feldspar and phyllosilicates generated linear zones of friable rock with increased porosity and permeability (sanding, or arenisation). One (or more) uplift episode followed with lowering base level and increasing hydraulic gradients. The faster water flow is concentrated in the high-permeability zones, and loose quartz grains are mechanically removed, creating linear conduits (piping). The essential conditions for cave development in southeastern Minas Gerais were: a large difference between local and regional base levels; the presence of rock layers specifically susceptible to sanding and piping processes (thin-grained micaceous quartzite layers), or impermeable layers (schist lenses) and a sequence of stability/uplift cycles. Different cave patterns and sizes can be explained by changes in one or more of the above conditions.

Ochtina Aragonite Cave (Western Carpathians, Slovakia): Morphology, mineralogy of the fill and genesis, 2002, Bosak P, Bella P, Cilek V, Ford Dc, Hercman H, Kadlec J, Osborne A, Pruner P,
Ochtina Aragonite Cave is a 300 m long cryptokarstic cavity with simple linear sections linked to a geometrically irregular spongework labyrinth. The metalimestones, partly metasomatically altered to ankerite and siderite, occur as isolated lenses in insoluble rocks. Oxygen-enriched meteoric water seeping along the faults caused siderite/ankerite weathering and transformation to ochres that were later removed by mechanical erosion. Corrosion was enhanced by sulphide weathering of gangue minerals and by carbon dioxide released from decomposition of siderite/ankerite. The initial phreatic speleogens, older than 780 ka, were created by dissolution in density-derived convectional cellular circulation conditions of very slow flow. Thermohaline convection cells operating in the flooded cave might also have influenced its morphology. Later vadose corrosional events have altered the original form to a large extent. Water levels have fluctuated many times during its history as the cave filled during wet periods and then slowly drained. Mn-rich loams with Ni-bearing asbolane and bimessite were formed by microbial precipitation in the ponds remaining after the floods. Allophane was produced in the acidic environment of sulphide weathering. La-Nd-phosphate and REE enriched Mn-oxide precipitated on geochemical barriers in the asbolane layers. Ochres containing about 50 wt.% of water influence the cave microclimate and the precipitation of secondary aragonite. An oldest aragonite generation is preserved as corroded relics in ceiling niches truncated by corrosional bevels. Thermal ionisation mass spectrometry and alpha counting U series dating has yielded ages of about 500-450 and 138-121 ka, indicating that there have been several episodes of deposition, occurring during Quaternary warm periods (Elsterian 1/2, Eemian). Spiral and acicular forms representing a second generation began to be deposited in Late Glacial (14 ka - Allerod) times. The youngest aragonite, frostwork, continues to be deposited today. Both of the, younger generations have similar isotopic compositions, indicating that they originated in conditions very similar, or identical, to those found at present in the cave

Karst development on carbonate islands, 2003, Mylroie J. E. , Carew J. L.

Karst development on carbonate platforms occurs continuously on emergent portions of the platform. Surficial karst processes produce an irregular pitted and etched surface, or epikarst. The karst surface becomes mantled with soil, which may eventually result in the production of a resistant micritic paleosol. The epikarst transmits surface water into vadose pit caves, which in turn deliver their water to a diffuse-flow aquifer. These pit caves form within a 100,000 yr time frame. On islands with a relatively thin carbonate cover over insoluble rock, vadose flow perched at the contact of carbonate rock with insoluble rock results in the lateral growth of vadose voids along the contact, creating large collapse chambers that may later stope to the surface.
Carbonate islands record successive sequences of paleosols (platform emergence) and carbonate sedimentation (platform submergence). The appropriate interpretation of paleosols as past exposure surfaces is difficult, because carbonate deposition is not distributed uniformly, paleosol material is commonly transported into vadose and phreatic voids at depth, and micritized horizons similar in appearance to paleosols can develop within existing carbonates.
On carbonate islands, large dissolution voids called flank margin caves form preferentially in the discharging margin of the freshwater lens from the effects that result from fresh-water/salt-water mixing. Similarly, smaller dissolution voids also develop at the top of the lens where vadose and phreatic fresh-waters mix. Independent of fluid mixing, oxidation of organic carbon and oxidation/reduction reactions involving sulfur can produce acids that play an important role in phreatic dissolution. This enhanced dissolution can produce caves in fresh-water lenses of very small size in less than 15,000 yr. Because dissolution voids develop at discrete horizons, they provide evidence of past sea-level positions. The glacio-eustatic sea-level changes of the Quaternary have overprinted the dissolutional record of many carbonate islands with multiple episodes of vadose, fresh-water phreatic, mixing zone, and marine phreatic conditions. This record is further complicated by collapse of caves, which produces upwardly prograding voids whose current position does not correlate with past sea level positions.
The location and type of porosity development on emergent carbonate platforms depends on the degree of platform exposure, climate, carbonate lithology, and rate of sea-level change. Slow, steady, partial transgression or regression will result in migration of the site of phreatic void production as the fresh-water lens changes elevation and moves laterally in response to sea-level change. The result can be a continuum of voids that may later lead to development solution-collapse breccias over an extended area.


Sedimentation and porosity enhancement in a breached flank margin cave, 2004, Florea Lj, Mylroie Je, Price A,
San Salvador Island, Bahamas, provides unique opportunities to study modem geologic processes on carbonate platforms as a result of constraints in time and space. The time span of exposed geology is limited to the middle Pleistocene through Holocene (< 500 ka), and the island lies on an isolated platform (12 by 19 km). Altar Cave, formed within an oxygen isotope substage 5e eolianite (approximately 125 ka) of the Grotto Beach Formation on San Salvador, is a classic example of a flank margin cave that has been exposed during hillslope retreat. The nature of Altar Cave (restricted entrance, simplistic morphology, and easy access) facilitates a sedimentation study. Sediment profiles from trenches dug at three locations in Altar Cave show that the deposits in the cave formed as an early stage of development of a Holocene strand plain that is present today between the cave and the beach. Altar Cave was breached by Holocene coastal processes; C-14 dates show sand fill deposits in the cave to be Holocene (4.7 ka). C-14 dates, XRD, and geochemical analyses show the surficial sediment to be recent (0.6 ka), and that leaching has altered the bedrock floor of the cave. Petrologic study of the floor rock has provided evidence of autogenic sedimentation prior to breaching of the cave in the form of dissolution residuum accumulating during, cave development. Petrologic analysis shows that this leaching has resulted in increased bedrock porosity below the sediment profile. Also, introduced organics have contaminated the late Pleistocene bedrock with young carbon, resulting in C-14 ages of 14 ka at 0.3 m in depth and 28 ka at 1.3 m in depth. The results of this study demonstrate a potential method of porosity enhancement in young carbonates by vadose leaching. Porosity-enhanced zones have implications for our understanding of recharge to fresh-water lenses on carbonate islands

Quaternary dedolomitization along fracture systems in a Late Triassic dolomitized platform (western Southern Alps, Italy), 2004, Ronchi P. , Jadoul F. , Savino R. ,
The studied area belongs to a south vergent thrust and fold belt of the Southern Alps of central Lombardy where the norian Dolomia Principale crops out. This up to 2 km thick carbonate platform succession has been massively dolomitized from early to shallow burial diagenesis. Dark grey bedded dolostones (basal Dolomia Principale), outcropping along the both lower slopes of Iseo Lake (lower Camonica Valley), show a complex network of dedolomitized white-grey areas. The calcareous lenses show an irregular, elongated (up to few ineters large) shape; they are usually located along fault-fracture systems and extending along the strata bedding. Two main fabrics have been recognized: the fabric A is formed by a reticulate of small fractures filled by calcite and surrounded by fine grained calcitized halos, the fabric B is associated to more intense fracturation process that locally gave rise to breccia fabric; moreover a ochre-reddish internal sediment is locally present in small cavities or as a breccia matrix, a huge speleothem-like cementation is associated to these dedolomitized fabric. This study was aimed to reconstruct the dedolomitization process and to propose a relevant genetic model. The petrographic analyses, integrated using cathodoluminescence and electron scanning microscope allowed to find out that dedolomitization process is composed of a first phase of dolomite dissolution along permeable path ways, both at the macro and at the micro scale, followed by calcite precipitation in the pore spaces. The negative delta(13)O and delta(13)C values of the calcite cements and the calcitic fraction of the dedolomitized fabrics suggest precipitation in presence of meteoric water derived fluids. Radiometric absolute age determination (U-230/Th-234) indicates that calcite cements precipitated in the last 100000 years: age during which the area was subject to several advances and retreats of glacial tongues. The field mapping, analytical data and the geomorphology of the areas where the dedolomitized patches are more frequent, in correspondence of a narrow passage of the lower Camonica valley, allowed us to infer that the dedolomitization developed during glacial-interglacial phases particularly active in the region during the Pleistocene. In particular we propose that the fracturation and the first phase of dedolomitization (fabric A) occurred during the glacial period, while extensive calcite precipitation and brecciation (fabric B) formed during the interglacial periods, dominated by a warm climate during which extensive soil cover and karst processes developed

Authigenic halloysite from El-Gideda iron ore, Bahria Oasis, Egypt: characterization and origin, 2004, Baioumy Hm, Hassan Ms,
Halloysite in El-Gideda iron mine occurs as very soft, light and white-to-pinkish white pockets and lenses ranging in diameter from 50 cm to 1 m within the iron ore. Highly hydrated halloysite is the main constituent of these pockets beside some kaolinite and alunite. The diffraction pattern of the clay fraction (<2 {micro}m) shows a rather broad and diffuse 001 reflection spread between 10.3 and 13.6{degrees}2{theta}. Upon treatment, the 001 reflection of halloysite expands up to 10.94 A and 11.9 A corresponding to ethylene glycol and dimethyl formamide treatment, respectively. After these treatments, kaolinite appeared with its characteristic basal spacing (~7 A ). The percentage of halloysite in halloysite-intercalated kaolinite ranged between 80 and 90%. Heating to 350{degrees}C, produces a kaolinite-like structure (~7.1 A ) that developed to a metakaolinite-structure when heated to 550{degrees}C. Morphologically, halloysite appears as well developed tubes composed entirely of SiO2 and Al2O3, while kaolinite is characterized by very fine platelets arranged in book-like or rosette-like shapes. A differential thermal analysis curve of the studied halloysite showed an endothermic peak at ~138{degrees}C due to the dehydration of interlayer water of halloysite. The small shoulder at ~540{degrees}C and the endothermic peak at ~593{degrees}C is attributed to the dehydroxylation of halloysite, kaolinite and alunite. On the other hand the exothermic peak that appeared at 995{degrees}C is due to the formation of new phases such as mullite and/or spinel. The infrared vibrational spectrum is typical of highly disordered halloysite and kaolinite. Halloysite was formed as a result of alteration of the overlying glauconite suggesting intensive chemical alteration during a humid wet period that prevailed in the Bahria Oasis during the late Eocene. Glauconite alteration releases K, Fe, silica and alumina. Iron forms at least part of the iron ore in the El-Gideda mine while alumina forms halloysite as well as alunite when interacted with silica in an acidic environment

Ochtin Aragonite Cave (Slovakia): morphology, mineralogy and genesis, 2005, Bosk P. , Bella P. , Cilek V. , Ford D. C. , Hercman H. , Kadlec J. , Osborne A. , Pruner P. ,

Ochtiná Aragonite Cave is a 300 m long cryptokarstic cavity with simple linear sections linked to a geometrically irregular spongework labyrinth. The limestones, partly metasomatically altered to ankerite and siderite, occur as lenses in insoluble rocks. Oxygen-enriched meteoric water seeping along the faults caused siderite/ankerite weathering and transformation to ochres that were later removed by mechanical erosion. Corrosion was enhanced by sulphide weathering of gangue minerals and by carbon dioxide released from decomposition of siderite/ankerite. The initial phreatic speleogens, older than 780 ka, were created by dissolution in density-derived convectional cellular circulation conditions of very slow flow. Thermohaline convection cells operating in the flooded cave might also have influenced its morphology. Later vadose corrosional events have altered the original form to a large extent. Water levels have fluctuated many times during its history as the cave filled during wet periods and then slowly drained.
Mn-rich loams with Ni-bearing asbolane and birnessite were formed by microbial precipitation in the ponds remaining after the floods. Allophane was produced in the acidic environment of sulphide weathering. La-Nd-phosphate and REE enriched Mn-oxide precipitated on geochemical barriers in the asbolane layers. Ochres containing about 50 wt.% of water influence the cave microclimate and the precipitation of secondary aragonite. An oldest aragonite generation is preserved as corroded relics in ceiling niches truncated by corrosional bevels. TIMS and alpha counting U series dating has yielded ages of about 500-450 and 138-121 ka, indicating that there have been several episodes of deposition, occurring during Quaternary warm periods (Elsterian 1/2, Eemian). Spiral and acicular forms representing a second generation began to be deposited in Late Glacial (14 ka – Alleröd) times. The youngest aragonite, frostwork, continues to be deposited today. Both of the younger generations have similar isotopic compositions, indicating that they originated in conditions very similar, or identical, to those found at present in the cave.


Paleokarst in Middle Devonian Winnipegosis mud mounds, subsurface of south-central Saskatchewan, Canada, 2006, Fu Q, Qing H, Bergman Km,

Paleokarst of the Winnipegosis mud mounds is mainly characterized by extensive solution features and cavity deposits. Solution features vary from millimetre-size vugs/channels to metre-scale caverns. Most solution voids are filled with anhydrite and/or carbonate deposits. 'Swiss-cheese' type porosities appear as oval to irregular pore networks and most of them remain open. Erosional surfaces are observed in several cores. Fractures and breccia fragments are small-scale and commonly associated with solution features or calcretes. Cavity sediments are dominantly detrital dolomite, interpreted as a product of weathering of the host rocks. Speleothems occur in vugs and channels but are not abundant. Caverns and large vugs likely formed at or just below the water table in the phreatic zone or in a freshwater-saltwater mixing zone during subaerial exposure of the mounds. Porous 'Swiss-cheese' fabrics resemble sponge-like pores that form in mixing zones of modern carbonate platforms and islands. Porosity in the Winnipegosis mounds was extensively modified by karstification and subsequent anhydrite cementation. Paleokarst occurs only in the middle and upper parts of relatively high Winnipegosis mounds with respect to the basin floor. Multiple levels of caverns and vugs are probably related to various positions of freshwater lenses corresponding to recurrent subaerial exposure and water level changes in the Elk Point Basin. Occurrence of caverns and large vugs at 55 m below the top of the mounds indicates that the mixing zone or freshwater has extended downward to this depth


Results 1 to 15 of 21
You probably didn't submit anything to search for