Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That ascender is a mechanical device used by cavers who are either ascending or are descending through a vertical opening in a cave (e.g. vadose shaft) that uses a cam to grip a rope while downward pressure is being applied to the device [13]. see also mechanical ascender; prusiking; prusik knot.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for limestone aquifer (Keyword) returned 53 results for the whole karstbase:
Showing 1 to 15 of 53
Characterizing flow zones in a fractured and karstified limestone aquifer through integrated interpretation of geophysical and hydraulic data, , Nathalie Van Meir, David Jaeggi, Martin Herfort, Simon Loew, Philippe A. Pezard, Crard Lods,

Tertiary limestone aquifer system in the southeastern states, 1971, Legrand H. E. , Stringfield V. T. ,

Point recharge of limestone aquifers a model from New Zealand karst., 1983, Gunn J.

POINT-RECHARGE OF LIMESTONE AQUIFERS - A MODEL FROM NEW-ZEALAND KARST, 1983, Gunn J. ,

Les exutoires de l'aquifre karstique de la Fontaine de Vaucluse, 1985, Michelot Cl. , Mudry J.
REMARKS ABOUT THE OUTLETS OF THE LIMESTONE AQUIFER OF THE FONTAINE DE VAUCLUSE (SOUTHEASTERN FRANCE) - The Fontaine de Vaucluse is apparently the single outlet of the Vaucluse table-lands, a calcareous aquifer of more than 1000 square kilometres. The hydro-geochemical study (major ionic elements and isotopes) of the different water spots of the western boundaries of this area (springs and wells) enables one to identify the different families of water (coming from the Vaucluse table-lands or from the Comtat plain) that emerge out of the Fontaine de Vaucluse or out of other places covered with the tertiary and quaternary deposits.

KARST HYDROGEOLOGY OF THE TAKAKA VALLEY, GOLDEN BAY, NORTHWEST NELSON, 1991, Mueller M. ,
Upper Ordovician Arthur Marble and Oligocene Takaka Limestone contain extensive phreatic cave systems beneath the Takaka valley and Golden Bay. Half of all water flows in the Takaka valley pass through subterranean drainage conduits in carbonate rock. New Zealand's largest freshwater springs, the Waikoropupu Springs, are one surface expression of these karst systems. Other characteristics are dolines and submarine springs. A paleocave system developed in the Arthur Marble during the formation of the northwest Nelson peneplain in the Late Cretaceous and early Tertiary. Subsequent subsidence of the peneplain, and deposition of Motupipi Coal Measures, Takaka Limestone, and Tarakohe Mudstone, was followed by folding and faulting of the sequence in the Kaikoura Orogeny. Uplift and erosion in the Pleistocene brought the two carbonate rock formations within reach of groundwater movements. The paleocave system in Arthur Marble was reactivated during periods of glacial, low sea levels, and a smaller cave system formed in the overlying Takaka Limestone. Both systems interact and extend to more than 100 m below present sea level, forming the Arthur Marble - Takaka Limestone aquifer

Symposium Abstract: Acid sulphate reaction and the generation of porosity in the Lincolnshire limestone aquifer, 1992, Moncaster S. J. , Bottrell S. H.

WATER-BUDGET, FUNCTIONING AND PROTECTION OF THE FONTAINE-DE-VAUCLUSE KARST SYSTEM (SOUTHEASTERN FRANCE), 1992, Blavoux B, Mudry J, Puig Jm,
The karst aquifer of the well-known Fontaine de Vaucluse has been recently studied, results have been got about delimitation of the system and its working. Geological data (lithology and structure) have allowed to delimit an 1115 Km2 intake area including Ventoux-Lure north facing range (1,909-1,826 m) and the Plateau which is prolonging it southwards (Fig. 1 and 2). The average altitude of the whole area, obtained by balancing elevation belt surfaces, is about 870 m. This elevation squares with results of tracing tests (Fig. 3), environmental physical, chemical and isotopic tracings, that allow to value a 850 m average altitude for the intake area (Fig. 4). The moisture balance has been computed from an altitude belts climatic model, using local rain an temperature gradients (Fig. 5 and Table II), because the weather network is not representative. So, rainfalls rise of about 55 mm per 100 m elevation and temperature decreases of about 0.5-degrees-C per 100 m. The consequence of these two antagonist phenomena is the quasi constant value of actual evapotranspiration on each altitude belt. With the Fig. 7 organigram, curves of effective rainfalls and infiltration coefficient versus elevation can be plotted (Fig. 6). This computation shows that 3/4 of the total and the whole of dry season effective rainfalls are provided by the part of the intake area situated above the average altitude: on the lowest belt, effective rainfalls are only 120 mm per year and increase to 1380 mm on the upper section (Fig. 8 and Table 1). The weighted effective rainfalls are about 570 mm per year for the whole intake area. Hydrodynamical and physico-chemical studies show, despite its large size, the weak inertia of the system, so proves its good karstification, that confirms for the whole system the pin-point speleological observations. The discharge of the spring, which average value is 21 m3.s-1 (only 18 for the last ten years), can exceed 100 m3.s-1 and the minimum has never been lower than 3.7 m3.s-1 (Fig. 9). When it rains on the intake area, the increase of the discharge is very sudden in a rainy period : one to four days. This short delay is due to seepage through epikarst and unsaturated zone. During dry periods, the spring reaction is deadened, due to storage in the unsaturated zone. The silica content distribution was plotted during several hydrokinematical phases (Fig. 10). It shows: an almost unimodal distribution for the 8 km2 fissured limestone aquifer of Groseau; a multimodal one for the 1115 km2 karst aquifer of Fontaine de Vaucluse. This proves that karstification is more important than size in the response of the system. Weak summer rainfalls do not influence the discharge, nevertheless they influence chemistry of the spring water, and so interrupts the water depletion phasis. Then, the decrease of discharge can continue after the end of the chemical depletion phasis, water which is overflowing after summer rainfalls (in a dry period) is influenced hy the chemistry of seepage water : on the graph of a principal components analysis, done on chemical variables. an hysteresis phenomenon can be seen (Fig. 11). A discriminant analysis (Fig. 12) confirms that these autumn waters, with high ratio seepage tracers, are not reserve waters from the saturated zone. The ratio of reserve water in the total discharge, is preponderant: 3/4 and 2/3 respectively of the yearly runoff volumes for 1981 and 1982 (Fig. 13), but an important part of these reserves can be stored in the unsaturated zone. This storage capacity can be valued by different means: transposing to Vaucluse (1115 km2) the volume measured on another karst system in the Pyrenees (13 km2); it gives about 100 million m2; using setting parameters of Bezes model (1976) on the same aquifer: it gives 113 million m3; using depletion curves, that show, for instance during the 1989 summer and autumn dry period, a 80 million m3 volume. In all cases, we get a value of about one hundred million m3 for the storage capacity of the unsaturated zone. With a 20 m range of fluctuation for the water table and with a 10(-2) specific yield, on a 500 to 1,000 km2 saturated zone, the zone of fluctuation can release about 10 to 20 million m3. Then, the volume of water stored in the whole saturated zone, with a 300 m minimum thickness (depth of the waterlogged pit of the Fontaine), a 500 km2 minimum surface and a 10(-3) specific yield, is about 150 million m3, including 27 million m3 stored in the channels. So, the unsaturated zone represents a significant part of the whole storage capacity and most of the yearly renewable reserves. Paradoxically, the biggest french spring is not tapped at all; as its intake area is neither a regional nor a national park, no general protection covers it : because of its good karstification, the vulnerability of the system is important. Good quality of water is attributable to the low population and human activities density on the intake area (4 inh.km-2). A great part of the intake area is uncultivated (large forest and ''garrigues'' areas). Due to the lack of surface water and scantness of soils, agriculture is not intensive (lavender, thyme, sage and bulk wheat fields. meadowlands). On the mountainous zone, roads are salted in winter and snowmelt water can reach a significantly high chloride ratio than in a natural climatic functioning (for instance 25 mg.l-1 in Font d'Angiou where the ratio would have been 3 mg.l-1). As tourism is developing both on the mountain and on the plateau, the management of the highest intake area must be carefully held: its part is preponderant in the feeding of the system

ISOTOPE HYDROLOGICAL STUDY OF MEAN TRANSIT TIMES IN AN ALPINE BASIN (WIMBACHTAL, GERMANY), 1992, Maloszewski P. , Rauert W. , Trimborn P. , Herrmann A. , Rau R. ,
Measurements of tritium and O-18 concentrations in precipitation and runoff were used to provide further insight into the groundwater storage properties of the Wimbachtal Valley, a catchment area of 33.4 km2, extending between 636 and 2713 m a.s.l. in the Berchtesgaden Alps. The catchment includes three aquifer types: a dominant porous aquifer; a fractured dolomite; a karstic limestone aquifer. Employing a simple hydrological model, information about mean transit times of environmental tracers is derived for the groundwater runoff component and several karst springs from the application of the exponential and dispersion flow models to the isotopic input and output data. The mean transit times calculated from a dispersion model with transit times of 4.1 years for O-18 and 4.2 years for tritium, which agree well, allow calculation of total (mobile stagnant) groundwater storage volume, which is equivalent to 6.6 m of water depth. Direct runoff appears negligible as in many other cases

Tracer study and storage in the unsaturated zone of a karstic limestone aquifer, 1992, Bottrell S. H. , Atkinson T. C.

POLLUTION OF LIMESTONE AQUIFER DUE TO URBAN WASTE-DISPOSAL AROUND RAIPUR, MADHYA-PRADESH, INDIA, 1994, Bodhankar N, Chatterjee B,
During the rainy season deterioration in the quality of water, supplied through dug wells and tube wells, near an abandoned limestone quarry was reported. The abandoned quarry is now being used as an urban waste disposal site. The problem was further complicated by hospitalization of several inhabitants who were using this water for domestic purposes. Looking into the consequences, chemical analysis of water from the quarry, dug wells and tube wells was carried out. The water was found to be contaminated. The transportation of pollutants from the quarry to the groundwater system was facilitated by karst features. Furthermore, four major sources domestic waste disposal, water conservation structures, landfills, and water wells contributing to pollution were identified. This case study is an attempt to provide an understanding of how the karst features facilitate groundwater contamination. It will help us answer a few questions such as why karst hydrogeology deserves special attention in urban expansion and what protective measures should be planned in view of rapid urbanization

INFLUENCE OF KARST HYDROLOGY ON WATER-QUALITY MANAGEMENT IN SOUTHEAST SOUTH-AUSTRALIA, 1994, Emmett Aj, Telfer Al,
Southeast South Australia has large reserves of potable groundwater, generally close to the surface. European settlement has had a major impact on groundwater quality due to the presence of extensive karst in the unconfined aquifer. Historically, industries such as cheese factories were often sited close to karst features (e.g. caves and sinkholes) because they provided a convenient means of waste disposal. Although most have long since closed, they have left a legacy of pollution plumes of varying sizes. In Mount Gambier, the main regional centre, the presence of both exposed and subterranean karst features provided a ''perfect system'' for the disposal of stormwater. Prior to the provision of a sewerage system within Mount Gambier, all toilet and household wastewaters were disposed to ground. These activities and the subsequent problems that began emerging in the 1960s have led to a concerted effort over the last 20 years to change the philosophy of waste disposal and to generate an understanding and responsibility by those who live in the region and depend on groundwater for the major part of their water supply. Mount Gambier's water supply comes from the Blue Lake. Groundwater inflow from a highly karstic Tertiary limestone aquifer provides 90% of the recharge to the Blue Lake. The lake is a high-value resource in a high-risk environment and in order to minimize this risk, a water-quality management plan for the lake is currently being developed

FORMATION OF REGOLITH-COLLAPSE SINKHOLES IN SOUTHERN ILLINOIS - INTERPRETATION AND IDENTIFICATION OF ASSOCIATED BURIED CAVITIES, 1994, Panno S. V. , Wiebel C. P. , Heigold P. C. , Reed P. C. ,
Three regolith-collapse sinkholes formed near the Dongola Unit School and the Pentecostal Church in the southern Illinois village of Dongola (Union County) during the spring of 1993. The sinkholes appeared over a three-month period that coincided with development of a new municipal well. The new well was drilled through clay-rich, valley-fill sediment into karstified limestone bedrock. The piezometric surface of the limestone aquifer is above land surface, indicating the presence of an upward hydraulic gradient in the valley and that the valley fill is acting as a confining unit. Pumping during development of the well lowered the piezometric surface of the limestone aquifer to an elevation below the base of the valley fill. It is hypothesized that drainage of water from the sediments, the resulting loss of hydrostatic pressure and buoyant force in overlying sediments, increased intergranular pressure, and the initiation of groundwater flow toward the well resulted in rapid sediment transport, subsurface erosion, and collapse of the valley-fill sediment. The sinkholes follow an approximately east west alignment, which is consistent with one of the two dominant alignments of passages of nearby joint-controlled caves. A constant electrode-separation resistivity survey of the school playground was conducted to locate areas that might contain incipient sinkholes. The survey revealed a positive resistivity anomaly trending N75E in the southern part of the study area. The anomaly is linear, between 5 and 10 m wide. and its trend either intersects or is immediately adjacent to the three sinkholes. The anomaly is interpreted to be a series of pumping-induced cavities in the valley-fill sediments that formed over a preexisting crevice in the karstified bedrock limestone

EARLY DEVELOPMENT OF KARST SYSTEMS .1. PREFERENTIAL FLOW PATH ENLARGEMENT UNDER LAMINAR-FLOW, 1994, Groves C. G. , Howard A. D. ,
Modeling of flow and solutional processes within networks of interconnected conduits in limestone aquifers indicates that enlargement occurs very selectively during the early stages of karst aquifer development under laminar flow. If initial flow paths are uniform in size, almost all enlargement occurs along a single set of connected conduits that lie along a direct path between recharge and discharge locations and are aligned along the hydraulic gradient. With a sufficiently large variation in initial aperture widths, enlargement occurs along the flow path offering the least resistance to flow, but since flow rates in laminar flow are proportional to the fourth power of diameter but only linearly proportional to hydraulic gradient, the preferentially enlarged set of fractures may follow an indirect path. Results disfavor earlier suggestions that nonselective cave patterns result from artesian flows (at least under laminar flow conditions) and that all passages should be competitive until the onset of turbulent flow

DAMPENING OF TRANSVERSE DISPERSION IN THE HALOCLINE IN KARST LIMESTONE IN THE NORTHEASTERN YUCATAN PENINSULA, 1995, Stoessell R. K. ,
A range of hydrodynamic dispersion coefficients was estimated for fracture-fluid and combined fracture and pore-fluid now within the halocline of the limestone aquifer forming the surface of the northern Yucatan Peninsula. The coefficients are fit parameters in a model reproducing observed halocline profiles in a sinkhole and in a borehole near the northeastern coast. Fitted coefficients range from 10(-7) to 10(-4) cm(2)/sec, of which molecular diffusion, without transverse (vertical) dispersion, can account for 10(-7) to 10(-5) cm(2)/sec. The mechanical stability of the vertical density gradient in the halocline dampens transverse dispersion in pore fluids and in fracture fluids that are transitional between laminar and turbulent flow. The dampening is proportional to the ratio of the energy needed for the fluid to rise and displace a less dense fluid to the vertical component of the kinetic energy of the fluid. The ratio of these two energies is at a maximum during the initial stage of development of a halocline and decreases as the halocline widens

Results 1 to 15 of 53
You probably didn't submit anything to search for