Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That saturated zone is see phreatic zone and zone of saturation.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
Engineering challenges in Karst, Stevanović, Zoran; Milanović, Petar
See all featured articles
Featured articles from other Geoscience Journals
Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy), Dimuccio, L.A.; Rodrigues, N.; Larocca, F.; Pratas, J.; Amado, A.M.; Batista de Carvalho, L.A.
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
See all featured articles from other geoscience journals

Search in KarstBase

Your search for limestone caves (Keyword) returned 60 results for the whole karstbase:
Showing 1 to 15 of 60
Origin of limestone caves, 1930, Davis W. M.

Vadose and phreatic features of limestone caves, 1942, Bretz J. H

Regional Development of Limestone Caves in Middle Tennessee, 1954, Barr Jr. , Thomas C.

Introduction to the Origin of Limestone Caves, 1960, Moore, George W.

Observations on Caves, Particularly Those Of South Australia - 1862 , 1962, Lane, Edward A.

The historical study of Australian caves and caving areas is fascinating although involving the expenditure of vast amounts of time. Australia's early days are unusually well-documented, but in the case of caves the early history is usually wrapped up in rumour, hearsay and clouded by lack of written record. Most research work means long hours poring over old newspaper files, mine reports, land department records and so on, little of which is catalogued. A small number of exploration journals and scientific studies have extensive material on special cave areas, and of these, the volume by Rev. Julian Edmund Woods, F.G.S., F.R.S.V., F.P.S., etc., and is one of the most interesting. This book gives the ideas and beliefs of 100 years ago concerning the origin, development and bone contents of caves and makes interesting reading in the light of more recent studies of cave origins. Wood's study "Geological Observations in South Australia : Principally in the District South-East of Adelaide" was published in 1862 by Longman, Green, Roberts and Green, London. In a preface dated November 15, 1861, Rev. Woods points out that the book was written while he was serving as a missionary in a 22,000 square mile district, and "without the benefit of reference, museum, library, or scientific men closer than England". Up to the time of writing, almost no scientific or geological work had been done in South Australia and much of the area was completely unexplored. The book, also, contained the first detailed description of caves in the south-east of the state. Father Woods writes about many different types of caves in South Australia, for instance, the "native wells" in the Mt. Gambier/Mt. Shanck area. These are caves, rounded like pipes, and generally leading to water level. Woods points out their likeness to artificial wells. He also writes of sea cliff caves, particularly in the Guichen Bay area, and blow holes caused by the action of the waves on the limestone cliffs. Woods discusses many other types of caves found further inland, particularly bone caves. Father Woods discusses cave origins under two sub-heads: 1. Trap rock caves generally resulting from violent igneous action, and 2. Limestone caves resulting from infiltration of some kind. He is mainly concerned with limestone caves which he sub-divides into (a) crevice caves - caves which have arisen from fissures in the rock and are therefore wedge-shaped crevices, widest at the opening, (b) sea-beach caves, caves which face the seashore and are merely holes that have been worn by the dashing of the sea on the face of the cliff, (c) egress caves, or passages to give egress to subterranean streams, (d) ingress caves, or passages caused by water flowing into the holes of rocks and disappearing underground. These caves would have entrance holes in the ground, opening very wide underneath, and having the appearance of water having entered from above, (e) finally a group of caves which he lists by use as "dens of animals".


Morphology of New Zealand Limestone Caves , 1963, Laird, M. G.

Limestone caves in New Zealand can be divided into two distinct groups : those developed in the nearby flat-lying limestone of Oligocene age, and those formed in the strongly folded Mt. Arthur Marble of Upper Ordovician age. Caves formed in Oligocene limestone are typically horizontal in development, often having passages at several levels, and are frequently of considerable length. Those formed in Mt. Arthur Marble have mainly vertical development, some reaching a depth of several hundred feet. Previous research into the formation and geological history of New Zealand cave systems is discussed briefly, and the need for further work is emphasised.


The Discovery, Exploration and Scientific Investigation of the Wellington Caves, New South Wales, 1963, Lane Edward A. , Richards Aola M.

Although research has been unable to establish a definite date of discovery for the limestone caves at Wellington, New South Wales, documentary evidence has placed it as 1828. The actual discovery could have been made earlier by soldiers or convicts from the Wellington Settlement, which dated from 1823. Whether the aborigines knew of the cave's existence before 1828 is uncertain, but likely, as in 1830 they referred to them as "Mulwang". A number of very small limestone caves were also discovered about the same time in the nearby Molong area. The Bungonia Caves, in the Marulan district near Goulburn, were first written about a short time later. On all the evidence available at present, the Wellington Caves can be considered to be the first of any size discovered on the mainland of Australia. The Wellington Caves are situated in a low, limestone outcrop about six miles south by road from the present town of Wellington, and approximately 190 miles west-north-west of Sydney. They are at an altitude of 1000 feet, about half a mile from the present bed of the Bell River, a tributary of the Macquarie River. One large cave and several small caves exist in the outcrop, and range in size from simple shafts to passages 200 to 300 feet long. Mining for phosphate has been carried out, resulting in extensive galleries, often unstable, at several levels. Two caves have been lit by electricity for the tourist trades; the Cathedral Cave, 400 feet long, maximum width 100 feet, and up to 50 feet high; and the smaller Gaden Cave. The Cathedral Cave contains what is believed to be the largest stalagmite in the world, "The Altar", which stands on a flat floor, is 100 feet round the base and almost touches the roof about 40 feet above. It appears that the name Cathedral was not applied to the cave until this century. The original names were "The Great Cave", "The Large Cave" or "The Main Cave". The Altar was named by Thomas Mitchell in 1830. See map of cave and Plate. Extensive Pleistocene bone deposits - a veritable mine of bone fragments - were found in 1830, and have been studied by palaeontologists almost continually ever since. These bone deposits introduced to the world the extinct marsupials of Australia, and have a special importance in view of the peculiar features of the living fauna of the continent. The names of many famous explorers and scientists are associated with this history, among the most prominent being Sir Thomas Mitchell and Sir Richard Owen. Anderson (1933) gives a brief outline of why the Wellington Caves fossil bone beds so rapidly attracted world-wide interest. During the 18th and early 19th Century, the great palaeontologist, Baron Georges Cuvier, and others, supposed that the earth had suffered a series of catastrophic changes in prehistoric times. As a result of each of these, the animals living in a certain area were destroyed, the area being repopulated from isolated portions of the earth that had escaped the catastrophe. The Bilical Deluge was believed to have been the most recent. Darwin, during the voyage of the Beagle around the world (1832-37), was struck by the abundance of Pleistocene mammalian fossils in South America, and also by the fact that, while these differed from living forms, and were in part of gigantic dimensions, they were closely related to present-day forms in that continent. Darwin's theory of descent with modification did not reconcile with the ideas of Cuvier and others. As the living mammalian fauna of Australia was even more distinctive than that of South America, it was a matter of importance and excitement to discover the nature of the mammals which had lived in Australia in the late Tertiary and Pleistocene.


Stream Potholes as Indicators of Erosion Phases in Limestone Caves, 1965, Ford, Derek C.

Laboratory and field evidence for a vadose origin of foibe (domepits)., 1965, Reams Max W.
Foiba (plural, foibe) is a term derived from the northeastern Italian karst region. The word is here suggested for use in preference to other terms referring to vertical cavities in soluble rocks. Foiba is defined as a cavity in relatively soluble rock which is natural, solutional, tends toward a cylindrical shape, and possesses walls which normally approach verticality. In laboratory experiments, limestone blocks were treated with dilute hydrochloric acid, and cavities resembling foibe were produced. Vertical walls developed only when a less soluble layer capped the limestone block or when the acid source was stationary, allowing acid to drip to the area directly below. Water analyses from foibe in central Kentucky and Missouri indicate that the water has had less residence time in the zone of aeration than other waters percolating through the rocks and entering the caves. In central Kentucky, foibe seem to be developed by migrating underground waterfalls held up by less soluble layers or by water moving directly down joints below less soluble layers. In Missouri, foibe are formed by joint enlargement below chert layers. Those foibe in the ceilings of caves are complicated by the enlargement of the lower part of the joints by cave streams during fluctuating water table conditions. In limestone caves of Kansas, foibe are formed in a similar manner as in Missouri. The foibe of the gypsum caves of Kansas are formed mainly on the sides of steep collapse sinkholes and lack joint control although they form beneath less soluble layers in the gypsum. Dripping water is necessary for the development of vertical walls by solution. Less soluble layers seem to be the unique feature which allows water to drip and pour into foibe. The floors of foibe are formed by less soluble layers or near the water table. If foibe intersect previously formed cave passages, no floors may develop.

Movements of Rhaphidophoridae (Orthoptera) In Caves At Waitomo, New Zealand, 1965, Richards, Aola M.

Cavernicolous Rhaphidophoridae are very active insects, in spite of their immobile appearance on the walls of caves. Movement is continuous to a greater or lesser degree throughout the 24 hour period of each day. Through marking a representative sample of the total adult population of two species of Rhaphidophoridae in limestone caves in New Zealand, it was shown that several different types of movement occurred; that home ranges had no well-defined limits; and that there was no evidence of territorial behaviour. The technique of marking Rhaphidophoridae is discussed in some detail.


Bat Erosion in Australian Limestone Caves, 1965, Dwyer, P. D.

The clustering areas of bent-winged bats in limestone caves are frequently stained and etched. This staining is very intense, and covers large areas at breeding caves present in Palaeozoic limestones. Erosion of limestone is very conspicuous in these caves. Staining is not intense at breeding caves in Tertiary limestones, but a combination of chemical and mechanical erosion may, in part, account for the depth of dome pits in which the bats cluster. Certain caves that are characterised by extensive guano deposits and by conspicuously eroded and/or stained limestone, but which are currently without large colonies of bats, may represent ancestral breeding caves.


Hand Paintings In Caves (With Special Reference to Aboriginal Hand Stencils From Caves on the Nullarbor Plain, Southern Australia), 1966, Lane Edward A. , Richards Aola M.

This paper discusses hand stencils and imprints found in caves and rock shelters throughout the world, and considers their possible origin and significance. It discusses the paleolithic hand paintings of France and Spain, and presents some of the meanings attributed by various authors to this form of art. Particular mention is made to mutilation found in many of the hand stencils. Reference is made to historic and recent examples of these hand paintings. Australian aboriginal hand paintings in limestone caves and rock shelters are also considered and their meanings discussed. The similarity of Australian and European hand imprints is pointed out. Special reference is made to hand stencils found in caves on the Nullarbor Plain, Southern Australia. It appears that stencils in Abrakurrie Cave show the deepest penetration of aboriginal art yet recorded inside caves in Australia.


Dynamics of Sediment Transport in Limestone Caves, 1968, White Elizabeth L. , White William B.

The Hydrology of Limestone Caves, 1973, Newson M. D.

Cave and Landscape Evolution At Isaacs Creek, New South Wales, 1979, Connolly M. , Francis G.

Isaacs Creek Caves are situated in the Hunter Valley of New South Wales and form a distinct unit within the Timor karst region. The larger caves such as Man, Helictite and Belfry all show evidence of early development under sluggish phreatic conditions. Nevertheless later phases of dynamic phreatic and vadose development occurred in Belfry and Helictite caves. In the case of Helictite Cave sluggish phreatic, dynamic phreatic and vadose action may have operated simultaneously in different parts of the same cave. After each cave was drained through further valley incision by Isaacs Creek, extensive clay fills derived from surface soil were deposited in it. There has been considerable re-excavation of the fills; in Main Cave younger clay loams have partially filled the resulting cavities and thus underlie the older clays. The earliest speleogenesis took place in Main Cave which pre-dates the valley of Isaacs Creek. This cave now lies in the summit of Caves Ridge about 100m above the modern valley floor. Helictite and Shaft Caves formed when the valley had been cut down to within 30m of its present level and some early phreatic development also took place in the Belfry Cave at this time. Later phases of dynamic phreatic and vadose development in Belfry Cave occurred when the valley floor lay about 12m above its present level and can be correlated with river terraces at this height. Evidence from cave morphology, isotopic basalt dates and surfaces geomorphology indicates that Main Cave formed in the Cretaceous and that Helictite Cave, Shaft Cave and the early development in Belfry Cave date from the Palaeogene. Although the dynamic phreatic and vadose action in Belfry Cave is more recent, it may still range back into the Miocene. This is a much more ancient and extended chronology than has hitherto been proposed for limestone caves and is in conflict with widely accepted ideas about cave longevity. Nevertheless evidence from Isaacs Creek and other parts of the Hunter Valley indicates that the caves and landforms are ancient features and thus notions of cave longevity developed in younger geological environments of the northern hemisphere do not apply in the present context.


Results 1 to 15 of 60
You probably didn't submit anything to search for