Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That knots is various methods of securing or tying ropes or webbing material together by cavers [13]. see also prusik knot; prusiking.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for lithuania (Keyword) returned 7 results for the whole karstbase:
Gypsum karst of the Baltic republics., 1996, Narbutas Vytautas, Paukstys Bernardas
The Baltic Republics of Estonia, Latvia and Lithuania have karst areas developed in both carbonate and gypsiferous rocks. In the north, within the Republic of Estonia, Ordovician and Silurian limestones and dolomites crop out, or are covered by glacial Quaternary sediments. To the south, in Latvia and Lithuania, gypsum karst is actively developing in evaporites of Late Devonian (Frasnian) age. Although gypsum and mixed sulphate-carbonate karst only occupy small areas in the Baltic countries, they have important engineering and geo-ecological consequences. Due to the rapid dissolution of gypsum, the evolution of gypsum karst causes not only geological hazards such as subsidence, but it also has a highly adverse effect on groundwater quality. The karst territory of the Baltic states lies along the western side of the area, called the Great Devonian Field that form part of the Russian Plain. Within southern Latvia and northern Lithuania there is an area, exceeding 1000 sq. km, where mature gypsum karst occurs at the land surface and in the subsurface. This karst area is referred to here as the Gypsum Karst Region of the Baltic States. Here the surface karst forms include sinkholes, karst shafts, land subsidence, lakes and dolines. In Lithuania the maximum density of sinkholes is 200 per sq. km; in Latvia they reach 138 units per sq. km. Caves, enlarged dissolution voids and cavities are uncommon in both areas.

Planning for gypsum geohazards in Lithuania and England, 1999, Paukstys B. , Cooper A. H. , Arustiene J. ,
The rapid underground dissolution of gypsum, and the evolution of the gypsum karst in Lithuania and England, results in subsidence problems which can make construction difficult. The natural dissolution yields sulphate-rich groundwater of poor quality and the karst is susceptible to the rapid transmission of pollutants. In the north of Lithuania gypsum karst is developed in Devonian gypsum. Here the towns of Birai, Pasvalys and the surrounding countryside suffer subsidence and some buildings have been damaged. The majority of the potable water in these areas is derived from groundwater extracted from sandstone sequences that underlie the gypsum. In Lithuania conservation measures have been introduced to control agriculture and prevent pollution of the gypsum karst. These measures include environmentally-friendly farming, restrictions on land use and exclusion zones around subsidence hollows. In England subsidence caused by the dissolution of Permian gypsum has caused severe problems in the vicinity of the town of Ripen. Numerous buildings have been damaged and new sites are difficult to develop. Here formal planning regulations have recently been introduced to help to protect against the worst effects of subsidence resulting from gypsum dissolution. (C) 1999 Elsevier Science B.V. All rights reserved

Groundwater abstraction and contamination in Lithuania as geoindicators of environmental change, 2002, Klimas , Gregorauskas ,

Karst geoindicators of environmental change: The case of Lithuania, 2002, Taminskas J. , Marcinkevicius V. ,
Karst is the result of an epigenetic geomorphologic process that may involve rapid changes to landscapes and their physical properties, with the newly formed relief complicating regional economic development and the protection of nature. The intensity of the karst process is closely linked with the circulation of surface and groundwater, so that the parameters characterising water circulation and chemical denudation can serve as indicators of the intensity of karstification. In this article, we describe the North Lithuanian karst region, and evaluate the influence of climate and hydrological conditions on karstification. Upper Devonian gypsum and dolomites occur beneath the Quaternary sediments here. Sinkholes frequently appear where the latter are particularly thin and underlain by gypsum, suggesting that karstification is intensifying. This is perhaps related to climate change expressed by an increase in mean annual temperature and runoff, especially during warm winters. To identify the main determinants of the karst processes, monitoring was carried out between 1994 and 1999, and data on river runoff and water chemistry from 1962 to 1999 were examined. From 1978 to 1999, the mean chemical denudation rate in the active gypsum karst zone was 30% higher than from 1962 to 1977, a change mirrored by the increased total volume of new sinkholes that appeared in the 1980s and 1990s. We have calculated the rate of chemical denudation and sink-hole formation in the last four decades and discuss karst activitiy as a geoindicator of environmental change

Lithuanian karst region rivers' water ecology: hydrochemical and hydrobiological evaluation, 2004, Tumas R. ,
The Lithuanian karst region covers about 1000 km(3) in the northern part of the country. This is the most vulnerable area from a pollution point of view. The structure of the total dissolved solids (TDS) shows that the flow of rivers in the karst region is from hydraulically interconnected aquifers. For the last decade (1991-2000) TDS has varied considerably, from 529 to 732 mg/l. The predominant sources of nitrogen and phosphorus within the headwaters of the monitored rivers were diffuse and agricultural in nature. Downstream from the towns nitrogen and especially phosphorus showed both diffuse and point source signals. Contributions of point sources to the stream pollution by nutrients prevail. The time series of monthly dissolved oxygen (O-2) in the main karst region river - the Musa - shows the existence of multiplicative seasonality. The trend cycle (1991-1999) shows low levels of dissolved oxygen in 1991-1993, with a similar fluctuation in 1994, 1995 and 1996 (due to point pollution from the town of Siauliai) and a gradually improving situation since 1997. The general multiplicative trend of dissolved oxygen in the lower reaches of the Musa river (near the border with Latvia) is decreasing (within the accuracy limits). The abundance and species of zoo benthos are suitable criteria (biotic index - 131) for evaluation of a river's biological water quality. Zoo benthos demonstrates tolerances that vary among species, the oxygen regime and the pollution with nitrogen. The best living conditions for invertebrates are in the riverhead of the karst region rivers - 131 = 5.62-6.74 (1991-1999), where pollution with nutrients is caused mostly by agricultural activity. Rare and asynchronous data of biological water quality shows up tendencies that invertebrates prefer less contaminated reaches of rivers

Sulfate-Reducing Bacteria in Gypsum Karst Lakes of Northern Lithuania, 2005, Paskauskas R. , Kucinskiene A. , Zvikas A. ,

Dealing with gypsum karst problems: hazards, environmental issues, and planning, 2013, Cooper A. H. , Gutierrez F.

Gypsum dissolves rapidly underground and at the surface, forming gypsum karst features that include caves, subsidence areas, and sinkholes. Mapping these landforms, understanding the gypsum karst and local hydrogeology, and producing sinkhole susceptibility and hazard maps are crucial for development and public safety. Situations that change the local hydrogeology, such as dams, water abstraction, or injection/drainage, can accelerate dissolution and subsidence processes, increasing the severity of the problems; dams and canals built on gypsum karst can leak or fail catastrophically. Gypsum karst problems can be mitigated by careful surveying and scientific investigation followed by phased preventive planning, ground investigation, and construction incorporating sinkhole-proof designs. Towns and cities, including parts of Paris (France), Dzerzhinksk (Russia), Madrid and Zaragoza (Spain), Birzai (Lithuania), and Ripon and Darlington (UK), are developed on such ground requiring local planning guidelines and special construction methods. Roads, railways, pipelines, and bridges are particularly vulnerable to such subsidence and require special consideration. 


Results 1 to 7 of 7
You probably didn't submit anything to search for