Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That condensation is the transition from vapor to liquid state [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for macropores (Keyword) returned 6 results for the whole karstbase:
ESTIMATION OF PREFERENTIAL MOVEMENT OF BROMIDE TRACER UNDER FIELD CONDITIONS, 1994, Jabro J. D. , Lotse E. G. , Fritton D. D. , Baker D. E. ,
Leaching of agricultural chemicals from the root and vadose zones into groundwater is an important environmental concern. To procure a better understanding of the movement and transport of agricultural chemicals through the soil profile, a field research study was conducted to estimate bromide leaching losses under saturated conditions where preferential flow is occurring. The field data were then used to evaluate the LEACHM model. Eighteen double-ring infiltrometers were used to apply a pulse (100 mm depth) of bromide tracer on two previously saturated soils located in a karst region of southeastern Pennsylvania. Internal drainage over the next seven days resulted in nearly 51 % of the applied Br- being leached to a depth below 0.80 m. The LEACHM model was used to simulate the amount of bromide leached in each infiltrometer. The model predicted, accurately, an average of 46% of the applied Br- leached below the 0.80 m depth. Mcan values of bromide concentration in the soil profile were predicted within two standard deviations of the measured mean for all depths except for the 0.20-0.40 m depth increment where the model overpredicted the bromide concentration. The model predictions of Br- leached were tested against field measurements using several statistical tests. The LEACHM model performed adequately under preferential flow conditions, perhaps because the infiltration rate at each site was used as a model input. This, actually, is some measure of the macropore flow process and suggests that simple models such as LEACHM can be used in the field, as long as a distribution of infiltration rates is used as an input

INFILTRATION MECHANISMS RELATED TO AGRICULTURAL WASTE TRANSPORT THROUGH THE SOIL MANTLE TO KARST AQUIFERS OF SOUTHERN INDIANA, USA, 1995, Iqbal M. Z. , Krothe N. C. ,
A hydrogeological study was conducted, during the 1991-1992 water year, in the clay-soil mantled portion of a limestone terrain in southern Indiana. The purpose of the study was to investigate the modes of soil-water infiltration contributing to rapid transport of nitrate to the saturated zone. The I-year-cycle profiles of nitrate concentration vs. time show a consistent increase of nitrate at various depths in the unsaturated zone during the period of investigation. The increase of nitrate in soil water is attributed to the rapid flushing of the inorganic fertilizers from the fields after the area received sufficient rainfall in late fall. The investigation also showed a major movement of nitrate in quick pulses through the unsaturated zone, rather than a slow uniform recharge, immediately after a major storm event. The asymmetric profiles of nitrate concentration vs. depth point to the existence of preferential flow through macropores in the clay-soil mantle above the bedrock. Soil-water transport between storm events is by matrix type flow. Nitrogen isotopes were analyzed for representative groundwater samples collected before and immediately after fertilization of fields in the summer, 1991. The delta(15)N values of the samples did not show any major shift in nitrate sources between the sampling periods. The summer of 1991 was extremely dry prohibiting vertical transport of nitrate from the fields to the groundwater system. Any change in nitrate concentration in groundwater during this time is attributed to the mixing through lateral flow within the aquifer

Geophysical surveys over karst recharge features, Illinois, USA, 2001, Carpenter Pj, Ahmed S,
Karst aquifers supply a significant fraction of the world's drinking water. These types of aquifers are also highly susceptible to pollution from the surface with recharge usually occurring through fractures and solution openings at the bedrock surface. Thickness of the protective soil cover, macropores and openings within the soil cover, and the nature of the weathered bedrock surface all influence infiltration. Recharge openings at the bedrock surface, however, are often covered by unconsolidated sediments, resulting in the inadvertent placement of landfills, unregulated dump sites, tailing piles, waste lagoons and septic systems over recharge zones. In these settings surface geophysical surveys, calibrated by a few soil cores, could be employed to identify these recharge openings, and qualitatively assess the protection afforded by the soil cover. In a test of this hypothesis, geophysical measurements accurately predicted the thickness of unconsolidated deposits overlying karstic dolomite at a site about 100 km south of Chicago, Illinois. Zones of elevated electrical conductivity and high ground-penetrating radar (GPR) attenuation within the sediments coincided with subcropping solutionally-enlarged hydraulically active bedrock fractures. These fractures extend to over 12-m depth, as shown by 2-D inverted resistivity sections and soil coring. Anomalous electromagnetic (EM) conductivity and GPR response may be due to higher soil moisture above these enlarged fractures. An epikarstal conduit at 2.5-m depth was directly identified through a GPR survey. These results suggest that surface geophysical surveys are a viable tool for assessing the susceptibility of shallow karst aquifers to contamination

Development and Evolution of Epikarst in Mid-Continent US Carbonates, 2005, Cooley Tony L. , P. E.

This paper presents the basic elements of a conceptual model for the development of epikarst in US mid-continent, horizontally-bedded carbonates in which flow is largely confined to secondary and tertiary porosity. The model considers the development of epikarst regimes in carbonate sequences beginning shortly after non-carbonate rocks are eroded away to expose the underlying carbonates and follows this through capture of the shallow flow by deeper dissolution conduits with reorientation of the epikarst to a more vertical form. The model does not require an underlying zone of vadose flow and in many cases considers development of such a zone to depend on the water supply provided by prior development of the epikarst. It is not claimed that all epikarsts form in the accordance with this model; rather this paper presents a viable additional model for epikarst formation under appropriate starting conditions. Factors influencing the development of epikarst are a combination of: 1) the pre-karst topography and modifications to this as the system evolves, 2) the original distribution and aperture of fractures as well as the distance and orientation of physically favorable fractures relative to potential discharge points, such as existing dissolutionally-enhanced channels with low head or nearby valleys, 3) character of soil cover as this affects percolation of water to the rock, erodability of the soil, sediment filling of conduits, and transport of sediment 4) variations in availability of dissolutionally aggressive water with time and location, and 5) low solubility layers, such as shale or chert, that promote lateral flow until a penetration point can be found. These interact to form an epikarst and deeper karst system that progressively increases its capacity both by internal improvement of its flow routes and extension into adjacent areas. The availability of water needed to promote dissolution also often has a positive feedback relationship to epikarst, in which locations of most active dissolution modify their vicinity to progressively increase capture of water, which promotes further dissolution. In early stages, lateral flow through the overlying soils and along top-of-rock must dominate the groundwater flow because the relatively intact carbonates have insufficient transmissivity to convey the available recharge through the body of the rock. Top-of-rock runnels developed by a combination of dissolution of their floors and piping erosion of their roofs would carry a significant portion of the flow. Horizontally-oriented epikarst develops with discharge to local drainage. Cutters and pinnacles, collapse-related macropores, and areas of concentrated recharge would begin to form at this stage. Initial downward propagation of this system would occur mostly due to lateral flow. Mixing corrosion could occur in sumps in these lateral flow routes when fresh, percolating rainwater mixes with older water with a higher dissolved load. Should conditions be suitable, leakage from this system promotes the migration of deeper karst conduits into the area by Ewers multi-tiered headward linking. Other sources of water may also bring in such deeper conduits. Once such deeper conduits are present, the epikarst can evolve into a more vertically oriented system, at least in the vicinity of master drains into this deeper system. Former shallow epikarst routes may then plug with sediment. In some areas, deeper systems may never develop due to unfavorable conditions. The epikarst may be the only significant system in these cases. This includes the case of poor karst formers such as interbedded shales and carbonates that may have very shallow horizontal epikarst flow paths that channel shallow subsurface flows.


NMR Imaging of Fluid Exchange between Macropores and Matrix in Eogenetic Karst, 2009, Florea L. J. , Cunningham K. J. , Altobelli S.

Sequential time-step images acquired using nuclear magnetic resonance (NMR) show the displacement of deuterated water (D2O) by fresh water within two limestone samples characterized by a porous and permeable limestone matrix of peloids and ooids. These samples were selected because they have a macropore system representative of some parts of the eogenetic karst limestone of the Biscayne Aquifer in southeastern Florida. The macroporosity, created by the trace fossil Ophiomorpha, is principally well connected and of centimeter scale. These macropores occur in broadly continuous stratiform zones that create preferential flow layers within the Hydrogeologic units of the Biscayne. This arrangement of porosity is important because in coastal areas, it could produce a preferential pathway for salt water intrusion. Two experiments were conducted in which samples saturated with D2O were placed in acrylic chambers filled with fresh water and examined with NMR. Results reveal a substantial flux of fresh water into the matrix porosity with a simultaneous loss of D2O. Specifically, we measured rates upward of 0.001 mL/h/g of sample in static conditions, and perhaps as great as 0.07 mL/h/g of sample when fresh water continuously flows past a sample at velocities less than those found within stressed areas of the Biscayne. These experiments illustrate how fresh water and D2O, with different chemical properties, migrate within one type of matrix porosity found in the Biscayne. Furthermore, these experiments are a comparative exercise in the displacement of sea water by fresh water in the matrix of a coastal, karst aquifer since D2O has a greater density than fresh water.


Characterization of Spatial Heterogeneity in Groundwater Applications , 2009, Trinchero, Paolo

Heterogeneity is a salient feature of every natural geological formation. In the past decades a large body of literature has focused on the effects of heterogeneity on flow and transport problems. These works have substantially improved the understanding of flow and transport phenomena but still fail to characterize many of the important features of an aquifer. Among them, preferential flows and solute paths, connectivity between two points of an aquifer, and interpretation of hydraulic and tracer tests in heterogeneous media are crucial points that need to be properly assessed to obtain accurate model predictions. In this context, the aim of this thesis is twofold:

· to improve the understanding of the effects of heterogeneity on flow and transport phenomena
· to provide new tools for characterizing aquifer heterogeneity

First, we start by theoretically and numerically examine the relationship between two indicators of flow and transport connectivity. The flow connectivity indicator used here is based on the time elapsed for hydraulic response in a pumping test (e.g., the storage coefficient estimated by the Cooper-Jacob method, Sest). Regarding transport, we select the estimated porosity from the observed breakthrough curve (Φ est) in a forced-gradient tracer test. Our results allow explaining the poor correlation between these two indicators, already observed numerically by Knudby and Carrera (2005).

Second, a geostatistical framework has been developed to delineate connectivity patterns using a limited and sparse number of measurements. The methodology allows conditioning the results to three types of data measured over different scales, namely: (a) travel times of convergent tracer tests, ta, (b) estimates of the storage coefficient from pumping tests interpreted using the Cooper-a Jacob method, S est, and (c) measurements of transmissivity point values, T. The ability of the methodology to properly delineate capture zones is assessed through estimations (i.e. ordinary cokriging) and sequential gaussian simulations based on different sets of measurements.


Third, a novel methodology for the interpretation of pumping tests in leaky aquifer systems, referred to as the double inflection point (DIP) method, is presented. The real advantage of the DIP method comes when it is applied with all the existing methods independently to a test in a heterogeneous aquifer. In this case each method yields parameter values that are weighted differently, and thus each method provides different information about the heterogeneity distribution. In particular, the combination of the DIP method and Hantush method is shown to lead to the identification of contrasts between the local transmissivity in the vicinity of the well and the equivalent transmissivity of the perturbed aquifer volume.

Fourth, the meaning of the hydraulic parameters estimated from pumping test performed in leaky aquifers is assessed numerically within a Monte Carlo framework. A synthetic pumping test is interpreted using three existing methods. The resulting estimated parameters are shown to be space dependent and vary with the interpretation method, since each method gives different emphasis to different parts of the timedrawdown data. Finally, we show that by combining the parameter estimates obtained from the different analysis procedures, information about the heterogeneity of the leaky aquifer system may be inferred.
Fifth, an unsaturated highly heterogeneous waste rock pile is modeled using a simple linear transfer function (TF) model. The calibration of the parametric model provides information on the characteristic time of the flow through the matrix and on the fraction of the water that, within each section, is channeled through the macropores. An analysis of the influence of the scale on the results is also provided showing that at large scales the behavior of the system tends to that of an equivalent matrix reservoir masking the effects of preferential flow.


Results 1 to 6 of 6
You probably didn't submit anything to search for