Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That geological organ is a cylindrical or funnelshaped cavity in relatively soluble bedrock which typically has a vertical orientation and is partly or wholly filled with material similar to the overlying sediment cover. they are produced by solution of bedrock and concomitant subsidence of its sedimentary cover. most have a diameter of 25 cm to 7 m and a depth of 2 to 30 m, but some may be much larger. a depth/diameter ratio of 5 to 20 may be considered representative. in actuality, geological organs are a type of subsidence doline that develops under a cover of younger rock or sediment [17]. synonyms: (french.) orgue geologigue, poche de dissolution, puits naturel; (belgian.) abannet, cavite de dissolution; (german.) geologische orgel, orgel, unterirdische doline, verwitterungssacke, naturlicher schacht, erdorgel, erdpfeife, riesentoph, bodenkarren, (british.) sand pipe, sand-gall, gravel-pipe, pipe, pocket deposit, gull; (italian.) organo geologico; (roumanian.) orgile geologice; (czech.) geologicke varhany; (polish.) organy geologiczne; (russian.) organnaya truba, kamin; (serbo-croatian.) geoloske orgulje; (slavic) geoloske orglje, zapolvje jaski; (dutch.) geologische orgelpijp, aardpijp.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for marseille (Keyword) returned 10 results for the whole karstbase:
Essai sur l'analyse des cavits kars-tiques du massif de Marseilleveyre et des archipels de Riou et du Frioul (Marseille), 1983, Blanc J. J. , Monteau R.
ESSAY ON THE ANALYSIS OF THE KARSTIC CAVES OF THE MASSIF DE MARSEILLEVEYRE AND OF THE RIOU-FRIOUL ARCHIPELAGOS, MARSEILLE, FRANCE - Statistical analysis and numeric treatment about the karstic caves of the Marseilleveyre Massif and Riou-Frioul archipelagos. We deal with the relationships between the lithology of consolidated speleothems, geologic framework, jointing intensity, morphology and mechanical phenomena (decompression and neotectonic actions).

Le karst du massif des Calanques (Marseille Cassis), 1988, Blanc J. J. , Monjeau R.
THE KARST OF THE CALANQUES massif - Description of karstic morphology in relation to lithology and tectonic framework; actual hydrography. Sedimentary analysis applied to speleothems (calcitic deposits, hardened silts with rubefaction, upper stalagmitic layers, eolianites). Relations with some recent tectonic mechanisms. Hydrogeology: marine resurgences, subterranean rivers (Port-Miou and Le Bestouan).

Prhistoire et karst littoral : la grotte Cosquer et les calanques mar_seillaises (Bouches-du-Rhne, France), 1996, Collinagirard, J.
The Cosquer Cave is a French palaeolithic painted and engraved cave (27000/ 18500 BP) which is located under the sea, in the urgonian limestones of Cap Morgiou ("Massif des Calanques"; Marseille). The en trance was submerged at the end of the last glacial stage and is presently 37 m under sea level. A synthesis about the Cosquer cave environmental studies is presented here. Structural studies show that cave planimetry is determined by Cap Morgiou fracturations (mainly NW/SE and N/S vertical faults). Through archaeological studies, a concretion breaking period can be dated between 27000 and 18000 BP. Geomorphological study of the continental shelf at the foot of the Cosquer cave area shows fossils shorelines at -36 m, -50/55 m, -90 m, -100 m depth. Radiocarbon datings from shells collected in 100m sediments yielded a date of 13 250 BP. Direct scuba diving observations and submarine clive profiles sketching show several eustatic stand-still levels between -36 m and the sea surface indicating a probable tectonic stability during the last 10000 years.

Remplissages karstiques tectoniss de la rgion de Marseille, 1999, Monteau, Raymond
The paleokarst fillings in the Riou and Frioul archipelagoes, the coastal ranges of MarseiIleveyre (Calanques) Notre Dame de la Garde (the Bay of Marseille) show several examples of various tectonic mechanisms due to compressive stresses. A chronology of the various phases is described: compartment process, overlapping, tilting. These deformations and the several after-episodes observed can be dated between the Lower Eocene and the Upper Pleistocene, but it is still difficult to give a more precise date. The tertiary fillings show the action of local decompression and tilting in some cases. In the detailed study of the karstic lithified deposits two kinds of tectonised sequences are shown in connection with the local tectonics.

Scuba observations of standstill levels in Elba Island (ltaly) and in Marie-Galante (West Indies). A worldwide sequence?, 1999, Collinagirard J,
Scuba observations (0 to -60 m) in Provence and Corsica and new data from Elba Island (Italy) indicate the bathymetric location of eustatic erosion levels in the Mediterranean Sea. A general sketch is given (standstill levels at-ii m, -17 m, -25 m, -35 m, -45 m, -50 m/55 m, -100 m). Isotopic data suggest contemporaneity of -100 m and -55 m levels with the two slow-down phases of Holocene transgression documented in Barbados and Tahiti coring (MWP-1A and 1B). Transgression acceleration after 14 000 BP explains the conservation of these littoral morphologies. Tectonics or isostasic movements (never more than 5 m) are prooved by differences observed in different areas of the world

Mn-Fe deposits in shallow cryptic marine environment: examples in northwestern Mediterranean submarine caves, 2001, Allouc J, Harmelin Jg,
Black coating of hard substrates by Mn and Fe oxides has long been reported from shallow, dark, submarine caves. However, these littoral metallic deposits have never been studied in detail, despite expected analogies with deep-sea polymetallic crusts. Submarine caves are characterized by darkness and low rates of exchanges with the open sea. Lack of primary production and confinement of inner water bodies result in marked oligotrophy and extremely reduced biomass, i.e. conditions close to those prevailing in deep-sea habitats. Field evidences suggested that the formation of Mn-Fe coatings was closely tied to these particular environmental conditions. The goal of this study was to examine the detailed features of Mn-Fe coatings from dark caves with different local conditions, and to try to identify the processes responsible for their deposition. Study sites and methods Three sublittoral, single-entrance, caves were sampled by scuba diving along the coasts of Provence (France, Mediterranean Sea) (fig. 1). The first site is a large karstic cave (Tremies Cave, 16 m depth at entrance floor, 60 m long; Marseille-Cassis area) with an ascending profile which results in a buffered thermal regime and markedly oligotrophic conditions due to warm water trapping in its upper part (fig. 1 and 2). Wall fragments were sampled at 30 m (medium confinement : zone B) and 60 in (strong confinement : zone C) from the cave entrance. The second site is a large tubular cavity open in conglomerate formations (3PP Cave, 15 m depth at entrance floor, 120 m long; La Ciotat) with a descending profile which results in relative permanence of winter temperatures within the inner parts, complex water circulation and presumed greater input of sedimented particles than in the preceding cave (fig.1 and 2). Wall samples were taken at 25 m, 70 in and 100 m from entrance. The third site is a small, horizontal, cave open in quartzite formations (Bagaud Cave, 7 in depth at entrance floor, about 10 m long; WNW of Port-Cros Island, bay of Hyeres). Sampling was performed on walls of a narrow corridor between an anterior room and a smaller inner room. A sporadic outflow of continental waters is located in the inner room. The samples were preserved in 50% ethylic alcohol or studied soon after their sampling. Before carbon coating and SEM examination, or microanalyses with SEM-associated spectrometers, they were treated in a 33% Chlorox solution and thereafter washed in demineralized water and dried. Micromorphology At low-medium magnification (<20,000), the aspect of coatings varies between caves and, especially, between inner-cave locations. All the described structures are made up of Mn and Fe oxides. In Tremies Cave, coatings of walls from zone B are composed of irregular erected constructions (height : 10s to 100s μm) formed by the aggregation of roughly ovoid primary concretions of about 10 μm (fig. 3). The surface of those primary concretions displays numerous lacunose to reticulate films (pores, about 0.5 μm in diameter, are often subrounded). Remnants of these films and organomorphic corpuscles occur also within the primary concretions (fig. 4). On younger substrates (broken wall exposed since 1970), primary concretions are poorly developed and no prominent construction is visible (fig. 5). In more confined conditions (zone C), the erected constructions of ancient coatings are smaller and less numerous than in zone B but are well individualized (fig. 6). In this zone: C, besides some remnants of lacunose to reticulate films (fig. 7), there is an appearance of filaments and ovoid corpuscles (height/width : 10-30/5-15 μm), which seem to be linked to filaments by a short stalk (fig. 8). In 3 PP Cave, at 25-70 m from entrance, wall coatings present porous heaps of primary concretions (fig. 9). The surface and the inside of the latter comprise remnants of lacunose to reticulate films that evoke those observed in Tremies Cave (fig. 10 and 11). On younger substrates (hard parts of sessile invertebrates), coatings are restricted to micrometric organomorphic corpuscles with some remnants of lacunose or fibrous films (fig. 12). At 100 in from the entrance, coatings are shaped by numerous erected constructions, more or less coalescing (fig. 13). Besides remnants of lacunose films, the primary concretions contain interlacing filaments (diameter : 0.2-0.3 μm) forming cords or veils (fig. 14). In Bagaud Cave, the primary concretions are aggregated in irregular heaps (fig. 15). Lacunose films are particularly frequent and tend to form three-dimensional mamillated structures that were not observed in the other caves (fig. 16). In particular, there is an appearance of tubular structures (fig. 17) and of numerous hemispheroidal structures (diameter : 4-5 μm) with an upper orifice (fig. 18 and 19). At higher magnification (20,000), whatever the cave and inner-cave location, the aspect of oxide deposits is rather smooth or, especially, microgranular (fig. 20). Mineral composition The composition of coatings is different between caves and according to their inner-cave location. In both large caves (Tremies and 3 PP), the Mn/Fe ratio increases with the distance from the cave entrance, i.e. when exchanges with the open sea diminish (fig. 21a). This trend is particularly clear in Tremies Cave, where the confinement gradient is strongly marked. Besides, the Mn/Fe ratio also seems to increase when films are present in the analysed volume (some cubic micrometers) (fig. 21b). In Bagaud Cave, the Mn/Fe ratio reaches high values despite the small size of this cave and its low confinement level. Discussion and conclusions SEM observations suggest that in each studied cave, the Mn-Fe coatings are biosedimentary deposits. Genesis of these deposits is assumed to result mainly from the replacement of biofilms (composed of cells and slime, i.e, of extracellular polymeric substance produced by microorganisms) generated by microbial populations colonizing the cave walls. Considering the darkness of the cave-locations, microbes consist mainly in bacteria, but fungi are probably responsible for the filaments and ovoids corpuscules (evoking sporocysts) occurring in innermost parts. Observations at different scales of the morphological features of oxide deposits reveal a structured organisation which varies along the strong environmental gradients (particularly the confinement level) that occur from the entrance to the innermost parts : erected constructions made up of primary concretions become more and more defined and acquire a pseudo-columnar shape. The aspect of biofilms appears to be controlled by the same environmental parameters. In open or relatively open environments, they frequently show a three-dimensional development (with frequent skullcape-like shapes), while in more confined conditions they exhibit a planar layout. These changes reflect either the adaptation of the slime-producing bacteria to the local trophic resources (correlated to the rate of exchange with the open sea) and water movements, or spatial replacement of taxa. It is assumed that slime (mainly composed of water and exopolysaccharides) induces a local increase of the concentration in dissolved Mn and acts as an ion exchange resin that allows the retention of Mn on the functional groups of EPS. These conditions promote the nucleation of Mn oxide crystallites in the slime. Then. the anionic character of Mn oxides in seawater, and their capacity to catalyse the oxydation of Mn2 to Mn4, allow the process to go on without any other biological intervention; thus, the process of crystal growth becomes possible. In caves where Mn is only supplied by seawater (Tremies and 3 PP), the average value of the Mn/Fe ratio of coatings is negatively correlated to the local availability of nutrients. This trend is probably linked to changes in the selectivity of slimes towards the processes of retention of cations, because this ratio is clearly influenced by the occurrence of biofilms. However, independently from trophic resources, the Mn/Fe ratio can be notably increased when additional Mn is provided by the seeping or flowing of continental waters (Bagaud Cave)

Prehistory and coastal karst area: Cosquer Cave and the Calanques of Marseille, 2004, Collinagirard, J.

The Cosquer Cave is a French Palaeolithic painted and engraved cave (27.000-18.500 BP), which is located under the sea, in the Urgonian limestones of Cap Morgiou (“Massif des Calanques”, Marseille). The entrance was submerged at the end of the Last Glacial Stage and is presently 37 m under sea level. A synthesis about the Cosquer Cave environmental studies is presented here. Structural studies show that caves planimetry is determined by Cap Morgiou jointing (mainly NW-SE and N-S vertical faults). Through archaeological studies, a speleothem breaking period can be dated between 27.000 and 18.000 BP. Geomorphologic study of the continental shelf at the foot of the Cosquer Cave area shows fossil shorelines at -36 m, -50/55 m, -90 m, -100 m depth. Radiocarbon dating from shells collected in -100m sediments yielded a date of 13.250 BP. Direct scuba diving observations and submarine cliff profiles sketching show several eustatic still stand¬ levels between -36m and the current sea surface indicating a probable tectonic stability during the last 10.000 years.


The effect of the Messinian Deep Stage on karst development around the Mediterranean Sea. Examples from Southern France, 2004, Audra P, Mocochain L, Camus H, Gilli E, Clauzon G, Bigot Jy,
It is difficult to explain the position and behaviour of the main karst springs of southern France without calling on a drop in the water table below those encountered at the lowest levels of Pleistocene glacio-eustatic fluctuations. The principal karst features around the Mediterranean are probably inherited from the Messinian period ('Salinity crisis') when sea level dropped dramatically due to the closing of the Straight of Gibraltar and desiccation of the Mediterranean Sea. Important deep karst systems were formed because the regional ground water dropped and the main valleys were entrenched as canyons. Sea level rise during the Pliocene caused sedimentation in the Messinian canyons and water, under a low hydraulic head, entered the upper cave levels. The powerful submarine spring of Port-Miou is located south of Marseille in a drowned canyon of the Calanques massif. The main water flow comes from a vertical shaft that extends to a depth of more than 147 in bsl. The close shelf margin comprises a submarine karst plateau cut by a deep canyon whose bottom reaches 1,000 in bsl. The canyon ends upstream in a pocket valley without relation to any important continental valley. This canyon was probably excavated by the underground paleoriver of Port-Miou during the Messinian Salinity Crisis. Currently, seawater mixes with karst water at depth. The crisis also affected inland karst aquifers. The famous spring of Fontaine de Vaucluse was explored by a ROV (remote observation vehicle) to a depth of 308 in, 224 m below current sea level. Flutes observed on the wall of the shaft indicate the spring was formerly an air-filled shaft connected to a deep underground river flowing towards a deep valley. Outcroppings and seismic data confirm the presence of deep paleo-valleys filled with Pliocene sediments in the current Rhone and Durance valleys. In the Ardeche, several vauclusian springs may also be related to the Messinian Rhone canyon, located at about 200 in below present sea level. A Pliocene base level rise resulted in horizontal dry cave levels. In the hinterland of Gulf of Lion, the Cevennes karst margin was drained toward the hydrologic window opened by the Messinian erosional surface on the continental shelf

Karst Memores Aboye and Beneath the See: Marseilles and Its Continental Shelf During the Cosquer Cave Occupation, 2013, Collinagirard, Jacques

In the south of France, the Cosquer Cave with its famous prehistoric paintings is located in  a karstic area located between Marseilles and Cassis. This emerged and submerged karst is  typical ofkarstic coasts submerged after the Late-Glacial Maximum. Ail the forms observed  in the hinterland can be observed directly by scuba divers and indirectly on bathymetrie  charts: lapiaz, karstic archs, sinkholes, uvala and polje. The emerged and submerged landscapes  are mainly the heritage of specifie lithological conditions (Urgonian limestones) and  tectonic conditions (vertical faulting network leading to coastal eollapse in theMediterranean  Sea). üther elements of this submerged Iandscape are given by the traces of the last sea  level rise (palaeo-shorelines and erosion platforms and notehes). AIl the area between  Marseilles and La Ciotat is now established as the Calanques National Park, inc1uding the  Cosquer Cave with its upper Palaeolithic rock art paintings, which adds an international  archaeological interest to this exceptional natural area


Karst Memories Above and Beneath the See: Marseilles and Continental Shelf During the Cosquer Cave Occupation, 2014, Collinagirard, Jacques

In the south of France, the Cosquer Cave with its famous prehistoric paintings is located in a karstic area located between Marseilles and Cassis. This emerged and submerged karst is typical of karstic coasts submerged after the Late-Glacial Maximum. Ail the forms observed in the hinterland can be observed directly by scuba divers and indirectly on bathymetrie charts: lapiaz, karstic archs, sinkholes, uvala and polje. The emerged and submerged landscapes are mainly the heritage of specifie lithological conditions (Urgonian limestones) and tectonic conditions (vertical faulting network leading to coastal eollapse in theMediterranean Sea). üther elements of this submerged Iandscape are given by the traces of the last sea level rise (palaeo-shorelines and erosion platforms and notehes). AIl the area between Marseilles and La Ciotat is now established as the Calanques National Park, inc1uding the Cosquer Cave with its upper Palaeolithic rock art paintings, which adds an international archaeological interest to this exceptional natural area.


Results 1 to 10 of 10
You probably didn't submit anything to search for