Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That porosity is 1. the ratio of the aggregate volume of interstices in a rock or soil to its total volume; generally stated as a percentage [10]. 2. the ratio, usually expressed as a percentage, of the total volume of voids of a given porous medium to the total volume of the porous medium [22]. 3. the volume percentage of the total bulk not occupied by solid particles [22]. see also porosity, effective; porosity, primary; porosity, secondary; porosity, tertiary.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
Engineering challenges in Karst, Stevanović, Zoran; Milanović, Petar
See all featured articles
Featured articles from other Geoscience Journals
Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy), Dimuccio, L.A.; Rodrigues, N.; Larocca, F.; Pratas, J.; Amado, A.M.; Batista de Carvalho, L.A.
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
See all featured articles from other geoscience journals

Search in KarstBase

Your search for mats (Keyword) returned 17 results for the whole karstbase:
Showing 1 to 15 of 17
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, , Bontognali Tomaso R. R. , D’angeli Ilenia M. , Tisato Nicola, Vasconcelos Crisogono, Bernasconi Stefano M. , Gonzales Esteban R. G. , De Waele Jo

Unusual speleothems resembling giant mushrooms occur in Cueva Grande de Santa
Catalina, Cuba. Although these mineral buildups are considered a natural heritage, their
composition and formation mechanism remain poorly understood. Here we characterize
their morphology and mineralogy and present a model for their genesis. We propose that
the mushrooms, which are mainly comprised of calcite and aragonite, formed during four
different phases within an evolving cave environment. The stipe of the mushroom is an
assemblage of three well-known speleothems: a stalagmite surrounded by calcite rafts
that were subsequently encrusted by cave clouds (mammillaries). More peculiar is the
cap of the mushroom, which is morphologically similar to cerebroid stromatolites and
thrombolites of microbial origin occurring in marine environments. Scanning electron
microscopy (SEM) investigations of this last unit revealed the presence of fossilized
extracellular polymeric substances (EPS)—the constituents of biofilms and microbial
mats. These organic microstructures are mineralized with Ca-carbonate, suggesting that
the mushroom cap formed through a microbially-influenced mineralization process. The
existence of cerebroid Ca-carbonate buildups forming in dark caves (i.e., in the absence
of phototrophs) has interesting implications for the study of fossil microbialites preserved
in ancient rocks, which are today considered as one of the earliest evidence for life on
Earth.


Sulfate reducing bacteria in microbial mats: Changing paradigms, new discoveries, 0000, Baumgartner Lk, Reid Rp, Dupraz C, Decho Aw, Buckley Dh, Spear Jr, Przekop Km, Visscher Pt,
Sulfate reducing bacteria (SRB) have existed throughout much of Earth's history and remain major contributors to carbon cycling in modern systems. Despite their importance, misconceptions about SRB are prevalent. In particular, SRB are commonly thought to lack oxygen tolerance and to exist only in anoxic environments. Through the last two decades, researchers have discovered that SRB can, in fact, tolerate and even respire oxygen. Investigations of microbial mat systems have demonstrated that SRB are both abundant and active in the oxic zones of mats. Additionally, SRB have been found to be highly active in the lithified zones of microbial mats, suggesting a connection between sulfate reduction and mat lithification. In the present paper, we review recent research on SRB distribution and present new preliminary findings on both the diversity and distribution of [delta]-proteobacterial SRB in lithifying and non-lithifying microbial mat systems. These preliminary findings indicate the unexplored diversity of SRB in a microbial mat system and demonstrate the close microspatial association of SRB and cyanobacteria in the oxic zone of the mat. Possible mechanisms and further studies to elucidate mechanisms for carbonate precipitation via sulfate reduction are also discussed

Carbonate rocks in the Black Sea basin: indicators for shallow water and subaerial exposure during Miocene--Pliocene time, 1979, Stoffers P. , Muller G. ,
Drilling in the Black Sea in general revealed three types of sediments: terrigenous, chemical, and biogenic. Terrigenous muds predominate in the Pleistocene whereas chemical sediments are abundant in the lower Pleistocene--Pliocene to Late Miocene sedimentary section. Biogenic constituents play a minor role only. The chemical sediments include calcite (lake chalk), Mg-calcite, aragonite, siderite and dolomite. Among these, the dolomites of Pliocene to Late Miocene age are most interesting. They were encountered in the two drill sites close to the Bosporus drilled in 2115 to 1750 m water depth, respectively. The dolomites show a great variety of criteria (e.g. intraclasts, algae mats, crusts, pellets, oolites), indicating a shallow water environment with occasional subaerial exposure and supratidal evaporitic conditions. The formation of these shallow water carbonates in the Black Sea is supposed to correlate with the Messinian salinity crisis in the Mediterranean

Phototrophic Microorganisms of the Pamukkale, 1997, Pentecost Allan, Bayari Serdar , Yesertener Cahit
The travertines at Pamukkale contain a diverse assemblage of phototrophs: 17 species of cyanobacteria, 16 diatoms, and 5 Chlorophyceae. Two communities were recognized on the active travertines: (1) surficial mats dominated by filamentous cyanobacteria, particularly Lyngbya (Phormidium) laminosum forming soft weakly mineralized layers to 10 mm thick, and (2) a predominantly endolithic assemblage, also dominated by cyanobacteria developing 2-5 mm below the travertine surface. The distribution of these communities is determined largely by water flow and the degree of desiccation. Two further communities are briefly described from nondepositing areas. Most of the active travertine consists of alternating layers of micrite and sparite 0.25-0.75 mm in thickness, which probably result from short-term fluctuations in water flow rather than diel events (photosynthesis, temperature). The presence of needle-fiber calcite in surface samples suggests that evaporation of water may play some part in travertine formation. The phototrophs appear to influence the travertine fabric only locally, where the surficial growths contain strings of calcite crystals ad-hering to the filaments, forming irregularly laminated layers. The hot-spring water is believed to be contaminated with sewage and agricultural effluent, but there was no evidence to suggest that this is currently affecting the travertine deposits. The water is supersaturated with respect to calcite when it contacts the travertine, and precipitation is primarily the result of carbon dioxide evasion. Water chemistry and discharge measurements indicate a total travertine deposition rate of 35 tonnes per day.

Une cavite de haute-montagne originale: la grotte Theophile (Alpe d'Huez, France). Role des paleoclimats pleistocenes dans la speleogenese., 1997, Audra Ph. , Quinif Y.

Chemoautotrophic microbial mats in submarine caves with hydrothermal sulphidic springs at Cape Palinuro, Italy, 1998, Mattison R. G. , Abbiati M. , Dando P. R. , Fitzsimons M. F. , Pratt S. M. , Southward A. J. , Southward E. C. ,
Observations were made on the distribution, morphology, and chemoautotrophic potential of microbial mats found in submarine caves of dolomitized limestone which contain hydrothermal sulphidic springs at Cape Palinuro, Italy. The distribution of microbial mats is closely associated with the flow of hydrothermal fluid from springs whose activity is intermittent and initiated during low tide. Fluid emitted from active springs in the Grotta Azzurra has a maximum temperature of 24.6 degrees C and is enriched in dissolved sulfur species (H2S, S2O32-) and dissolved gases (CH4, CO2). However, it is depleted in NaCl and dissolved O-2, in comparison with ambient seawater. This fluid is less dense and rises above the ambient seawater to form a visible thermocline and chemocline separating both lavers in the submarine caves. Microbial mats were attached to rock surfaces immersed in fluid above the chemocline and were differentiated into brown and white forms. Brown mats were composed of trichomes (4.2 0.1 mu m and 20.3 0.7 mu m in diameter) resembling the calcareous rock-boring cyanobacterium Schizothrix and clusters (6 mu m in diameter) of sarcina-like cells morphologically resembling methanogenic bacteria. White mats were composed of attached filaments resembling Beggiatoa (19.3 0.5 mu m, 39.0 1.7 mu m, and 66.9 3.3 mu m in diameter) and Thiothrix (4.2 0.2 mu m in diameter). Flexibacteria (<1 mu m in diameter) were common to both mats. Beggiatoa-like filaments were morphologically similar to those attached to rocks and the byssal threads of mussels from Lucky Strike vent field on the Mid-Atlantic Ridge, Morphological comparisons were also made with typical gliding Beggiatoa from shallow seeps in Eckernforder Bucht, Baltic Sea. White mats displayed chemoautotrophic fixation of CO2 under relatively well-oxygenated laboratory conditions (maximum rate 50.2 nmol CO2/mg dry wt/h) using internal S-0 or possibly S2O32- as electron donor. Photosynthesis may be limited in the Grotta Azzurra by insufficient illumination (6.3 x 10(-7) mu einsteins/cm(2)/s), with the possibility of Schizothrix living (at least in part) as a chemoheterotroph on while mats. Chemoautotrophic fixation of CO2 by white mats is proposed as a significant source of nutrition for benthic fauna in these caves, and has been estimated as contributing 50-70 mu mol CO2/m(2) of mat/min, as measured under laboratory conditions

Ecological assessment and geological significance of microbial communities from Cesspool Cave, Virginia, 2001, Engel As, Porter Ml, Kinkle Bk, Kane Tc,
Microbial mats from hydrogen sulfide-rich waters and cave-wall biofilms were investigated from Cesspool Cave, Virginia, to determine community composition and potential geomicrobiological functioning of acid-producing bacteria. Rates of microbial mat chemoautotrophic productivity were estimated using [C-14]-bicarbonate incorporations and microbial heterotrophy was determined using [C-14]-leucine incubations. Chemoautotrophic fixation was measured at 30.4 12.0 ng C mg dry wt(1) h(1), whereas heterotrophic productivity was significantly less at 0.17 0.02 ng C mg dry wt(1) h(1). The carbon to nitrogen ratios of the microbial mats averaged 13.5, indicating that the mats are not a high quality food source for higher trophic levels. Ribosomal RNA-based methods were used to examine bacterial diversity in the microbial mats, revealing the presence of at least five strains of bacteria. The identity of some of the strains could be resolved to the genus Thiothrix and the Flexibacter-Cytophaga-Bacteriodes phylum, and the identity of the remaining strains was to either the Helicobacter or Thiovulum group. Two of 10 sulfur-oxidizing, chemoautotrophic pure cultures of Thiobacillus spp. (syn. Thiomonas gen. nov.) demonstrated the ability to corrode calcium carbonate, suggesting that the colonization and metabolic activity of these bacteria may be enhancing cave enlargement

Filamentous 'Epsilonproteobacteria' dominate microbial mats from sulfidic cave springs, 2003, Engel As, Lee N, Porter Ml, Stern La, Bennett Pc, Wagner M,
Hydrogen sulfide-rich groundwater discharges from springs into Lower Kane Cave, Wyoming, where microbial mats dominated by filamentous morphotypes are found. The full-cycle rRNA approach, including 16S rRNA gene retrieval and fluorescence in situ hybridization (FISH), was used to identify these filaments. The majority of the obtained 16S rRNA gene clones from the mats were affiliated with the 'Epsilonproteobacteria' and formed two distinct clusters, designated LKC group I and LKC group II, within this class. Group I was closely related to uncultured environmental clones from petroleum-contaminated groundwater, sulfidic springs, and sulfidic caves (97 to 99% sequence similarity), while group II formed a novel clade moderately related to deep-sea hydrothermal vent symbionts (90 to 94% sequence similarity). FISH with newly designed probes for both groups specifically stained filamentous bacteria within the mats. FISH-based quantification of the two filament groups in six different microbial mat samples from Lower Kane Cave showed that LKC group II dominated five of the six mat communities. This study further expands our perceptions of the diversity and geographic distribution of 'Epsilonproteobacteria' in extreme environments and demonstrates their biogeochemical importance in subterranean ecosystems

Bacterial diversity and ecosystem function of filamentous microbial mats from aphotic (cave) sulfidic springs dominated by chemolithoautotrophic 'Epsilonproteobacteria', 2004, Engel As, Porter Ml, Stern La, Quinlan S, Bennett Pc,
Filamentous microbial mats from three aphotic sulfidic springs in Lower Kane Cave. Wyoming. were assessed with regard to bacterial diversity, community structure, and ecosystem function using a 16S rDNA-based phylogenetic approach combined with elemental content and stable carbon isotope ratio analyses. The most prevalent mat morphotype consisted of while filament bundles, with low C:N ratios (3.5-5.4) and high sulfur content (16.1-51.2%). White filament bundles and two other mat morphotypes organic carbon isotope values (mean delta(13)C = -34.7parts per thousand: 1sigma = 3.6) consistent with chemolithoautotrophic carbon fixation from a dissolved inorganic carbon reservoir (cave water, mean delta(13)C = -7.47parts per thousand for two springs, n = 8). Bacterial diversity was as low overall in the clone libraries, and the most abundant taxonomic group was affiliated with the 'Epsilonproteobacteria' (68%) with other bacterial sequences affiliated with Gammaproteobacteria (12.2%), Betaproteobacteria (11.7%), Deltaproteobacteria (0.8%), and the Acidobacterium (5.6%) and Bacteriodetes/Chlorobi (1.7%) divisions. Six distinct epsilonproteobacterial taxonomic groups were identified from the microbial mats. Epsilonproteobacterial and bacterial group abundances and community structure shifted front the spring orifices downstream. corresponding to changes in dissolved sulfide and oxygen concentrations and metabolic requirements of certain bacterial groups. Most of the clone sequences for epsilonproteobacterial groups were retrieved from areas with high sulfide and low oxygen concentrations, whereas Thiothrix spp. and Thiobacillus spp. had higher retrieved clone abundances where conditions of low sulfide and high oxygen concentrations were measured. Genetic and metabolic diversity among the 'Epsilonproteobacteria' maximizes overall cave ecosystem function, and these organisms play a significant role in providing chemolithoautotrophic energy to the otherwise nutrient-poor cave habitat. Our results demonstrate that sulfur cycling supports subsurface ecosystem through chemolithoautotrophy and expand the evolutionary and ecological views of 'Epsilonproteobacteria' in terrestrial habitats. (C) 2004 Federation of European Microbiological Societies. Published by Elsevier BY. All rights reserved

The transition of a freshwater karst aquifer to an anoxic marine system, 2005, Garman Km, Garey Jr,
Jewfish Sink is located in the shallow seagrass flats of the Gulf of Mexico in west central Florida. Jewfish Sink was a submarine spring until the drought of 1961-1962 when it ceased flowing. Today, the sink is an anaerobic marine basin and provides the opportunity to study the implications of saltwater intrusion in coastal karstic areas. The biogeochemistry of Jewfish Sink was studied from summer 2001 through spring 2004. A distinct feature of the sink is the uniform cold temperature (16-17 degrees C) of the deeper anoxic water that does not match groundwater found nearshore or onshore (22-24 degrees C). There are four zones within the sink: oxic zone, transition zone, upper anoxic zone, and anoxic bottom water. The anoxic bottom water does not mix with water from above but may be linked to deep Gulf shelf water through ancient aquifer conduits. The other three zones vary seasonally in oxygen, salinity, and temperature because of limited mixing in the winter due to cooling and sinking of surface water. The walls of the anoxic zones have characteristic microbial mats that are found in other sulfidic karstic features in the area. Bacterial activity appears to be carbon limited in the anoxic zones where sulfate reduction appears to be the major metabolic process. The reduction of sulfate to sulfide appears to be driven by irregular influxes of organic matter including macroalgae, horseshoe crabs, and stingrays that become entrapped within the sink. Bacterial activity in the oxic zones appears to be phosphate limited. Although the system is partially isolated from the overlying marine ecosystem, organic input from above drives the bacterial anaerobic ecosystem, resulting in a sulfide pump. In this model, sulfide percolates up through the karst and removes oxygen from the overlying sediment, which has likely caused changes in the shallow benthic ecosystem. Jewfish Sink appears to be part of an extensive anoxic subterranean estuary that extends under parts of at least three coastal counties in Florida and can serve as a model for the effects of rising sea levels or aquifer mining

The role of flow velocity in the vertical distribution of particulate organic matter on moss-covered travertine barriers of the Plitvice Lakes (Croatia), 2006, Milisa M. , Habdija I. , Primchabdija B. , Radanovic I. , Kepcija R. ,
We investigated the distribution patterns of particulate organic matter (POM) on travertine barriers in respect to flow velocity. Research was conducted on the barrage-lake system of the Plitvice Lakes, Croatia. Four layers were distinguished within the substrate (moss mat three travertine layers) in three hydraulic habitats at three sites. Substrate samples were collected monthly with a core sampler. The aim of the study was to explore the ability of moss mats and travertine substrate to accumulate POM; to ascertain the role of flow velocity and to produce a model of POM distribution pattern. The average of POM deposited in the 10 cm deep zone decreased significantly in the three sites along longitudinal profile of the system. Most POM was deposited in the moss mats, and the amounts decreased exponentially with depth. This was observed for coarse particulate organic matter (CPOM), ultra-fine particulate organic matter (UPOM) and total organic matter (TPOM) while fine organic matter (FPOM) deposition appeared unaffected by depth. More POM was accumulated in hydraulic habitats of low flow velocity. Correlation between flow velocity and POM accumulation was generally negative. Positive correlations between flow velocity and deposition rates were noted for CPOM in moss mats and top travertine layers; the deposition of other POM fractions was negatively influenced by the flow velocity. The influence of flow velocity decreased with increasing depth. In the deepest layers (7-10 cm) flow velocity influenced only the deposition of the smallest particles (UPOM)

Castile evaporite karst potential map of the Gypsum Plain, Eddy County, New Mexico and Culberson County, Texas: A GIS methodological comparison, 2008, Stafford K. W. , Rosaleslagarde L. , Boston P. J.

Castile Formation gypsum crops out over ,1,800 km2 in the western Delaware Basin where it forms the majority of the Gypsum Plain. Karst development is well recognized in the Gypsum Plain (i.e., filled and open sinkholes with associated caves); however, the spatial occurrence has been poorly known. In order to evaluate the extent and distribution of karst development within the Castile portion of the Gypsum Plain, combined field and Geographic Information System (GIS) studies were conducted, which enable a first approximation of regional speleogenesis and delineate karst-related natural resources for management. Field studies included physical mapping of 50, 1-km2 sites, including identification of karst features (sinkholes, caves, and springs) and geomorphic mapping. GIS-based studies involved analyses of karst features based on public data, including Digital Elevation Model (DEM), Digital Raster Graphic, (DRG) and Digital Orthophoto Quad (DOQ) formats. GIS analyses consistently underestimate the actual extent and density of karst development, based on karst features identified during field studies. However, DOQ analyses coupled with field studies appears to produce accurate models of karst development. As a result, a karst potential map of the Castile outcrop region was developed which reveals that karst development within the Castile Formation is highly clustered. Approximately 40% of the region effectively exhibits no karst development (,1 feature/km2). Two small regions (,3 km2 each) display intense karst development (.40 features/km2) located within the northern extent of the Gypsum Plain, while many regions of significant karst development (.15 features/ km2) are distributed more widely. The clustered distribution of karst development suggests that speleogenesis within the Castile Formation is dominated by hypogenic, transverse processes.


Productivity-Diversity Relationships from Chemolithoautotrophically Based Sulfidic Karst Systems, 2009, Porter M. L. , Summers Engel A. , Kane T. C. And Kinkle B. K.
Although ecosystems thriving in the absence of photosynthetic processes are no longer considered unique phenomena, we have yet to understand how these ecosystems are energetically sustained via chemosynthesis. Ecosystem energetics were measured in microbial mats from active sulfidic caves (Movile Cave, Romania; Frasassi Caves, Italy; Lower Kane Cave, Wyoming, USA; and Cesspool Cave, Virginia, USA) using radiotracer techniques. We also estimated bacterial diversity using 16S rRNA sequences to relate the productivity measurements to the composition of the microbial communities. All of the microbial communities investigated were dominated by chemolithoautotrophic productivity, with the highest rates from Movile Cave at 281 g C/m2/yr. Heterotrophic productivities were at least one order of magnitude less than autotrophy from all of the caves. We generated 414 new 16S rRNA gene sequences that represented 173 operational taxonomic units (OTUs) with 99% sequence similarity. Although 13% of these OTUs were found in more than one cave, the compositions of each community were significantly different from each other (P?0.001). Autotrophic productivity was positively correlated with overall species richness and with the number of bacterial OTUs affiliated with the Epsilonproteobacteria, a group known for sulfur cycling and chemolithoautotrophy. Higher rates of autotrophy were also strongly positively correlated to available metabolic energy sources, and specifically to dissolved sulfide concentrations. The relationship of autotrophic productivity and heterotrophic cycling rates to bacterial species richness can significantly impact the diversity of higher trophic levels in chemolithoautotrophically-based cave ecosystems, with the systems possessing the highest productivity supporting abundant and diverse macro-invertebrate communities.

Productivity-Diversity Relationships from Chemolithoautotrophically Based Sulfidic Karst Systems, 2009, Porter M. L. , Summers Engel A. , Kane T. C. , Kinkle B. K.

Although ecosystems thriving in the absence of photosynthetic processes are no longer considered unique phenomena, we have yet to understand how these ecosystems are energetically sustained via chemosynthesis. Ecosystem energetics were measured in microbial mats from active sulfidic caves (Movile Cave, Romania; Frasassi Caves, Italy; Lower Kane Cave, Wyoming, USA; and Cesspool Cave, Virginia, USA) using radiotracer techniques. We also estimated bacterial diversity using 16S rRNA sequences to relate the productivity measurements to the composition of the microbial communities. All of the microbial communities investigated were dominated by chemolithoautotrophic productivity, with the highest rates from Movile Cave at 281 g C/m2/yr. Heterotrophic productivities were at least one order of magnitude less than autotrophy from all of the caves. We generated 414 new 16S rRNA gene sequences that represented 173 operational taxonomic units (OTUs) with 99% sequence similarity. Although 13% of these OTUs were found in more than one cave, the compositions of each community were significantly different from each other (P≤0.001). Autotrophic productivity was positively correlated with overall species richness and with the number of bacterial OTUs affiliated with the Epsilonproteobacteria, a group known for sulfur cycling and chemolithoautotrophy. Higher rates of autotrophy were also strongly positively correlated to available metabolic energy sources, and specifically to dissolved sulfide concentrations. The relationship of autotrophic productivity and heterotrophic cycling rates to bacterial species richness can significantly impact the diversity of higher trophic levels in chemolithoautotrophically-based cave ecosystems, with the systems possessing the highest productivity supporting abundant and diverse macro-invertebrate communities.


Genesis and functioning of the Aix-les-Bains hydrothermal karst (Savoie, France): past research and recent advances, 2010, Hoblea F. , Gallinojosnin S. , Audra Ph.

Aix-les-Bains (Savoie, France) owes its name and reputation to the thermal springs that occur along the eastern shore of Lake Bourget, France largest natural lake. Although the city waters have been exploited since Antiquity, scientific investigations into the nature and characteristics of the hydrothermal karst from which they emerge did not begin until the early 19th century. The present article traces the history of these investigations and summarizes the results of more than two centuries of scientific research. Today, the only visible signs of karstification related to hydrothermal flows are to be found in the discharge zone in the Urgonian limestone anticline that rises above the city centre. These features are: – the Grotte des Serpents, which houses the Alun Spring, the system main natural discharge, – the Chevalley Aven, a blind chimney that was accidentally uncovered in 1996, – other hydrothermal springs that are too small to enter, including the Soufre Spring. Although scientific investigation of the thermal springs at Aix-les-Bains began in the early 19th century, it was not until the 1920s that scientists started examining the relationship between karstification and the state of the aquifer. E.A.Martel was the first researcher to describe the Aix-les-Bains site as an active hydrothermal karst, in a pioneering study published in 1935. Sixty years later, the discovery of the Chevalley Aven during building work on a new hydrotherapy center gave fresh impetus to research into the karstification of the Aix-les-Bains thermo-mineral aquifer. Recent studies have also investigated the deep aquifer below the karst, using data provided by boreholes. The Urgonian limestone karst at Aix-les-Bains is the site of mixing between thermal waters rising through the anticline and meteoric waters percolating from the surface. Meteoric infiltration is sufficiently high for the hydrological behavior of the thermal springs to be identical to that of exsurgences in gravity-fed, cold-water transmissive karsts. The Chevalley Aven is a shaft that descends 30 meters below the surface, thereby providing access to the ground-water at depth. Monitoring of the water quality in the aven has shown that the Legionella contamination of the springs was due to high concentrations of the bacteria in upstream passages in the karst. In 2006, dye-tracing tests confirmed the existence of a hydraulic connection between the Chevalley Aven and the Alun and Soufre Springs, the fact there is a single ascending hydrothermal conduit, which lies between the Chevalley Aven and the Alun Spring. In addition to providing a valuable source of information about the functioning of the thermo-mineral aquifer, the cavities at Aix-les-Bains are of great karstological interest, especially for the study of hypogene speleogenetic processes. The circulation of warm (40oC), sulfur-rich waters and vapours through the system has led to the development of conduits with specific morphologies and the precipitation of characteristic deposits. These features include: – “beaded” chimneys and galleries formed by the linking of spheres produced by condensation-corrosion. Diffuse karstification along bedding planes around the main conduit; – deposition of non-carbonate minerals (gypsum, native sulfur); – formation of biothems and biofilms on walls subject to condensation. The Grotte des Serpents is a horizontal cavity that formed at the upper limit of the water table. The Chevalley Aven is a hypogene chimney that was sculpted under vadose conditions by the release of sulfuric acid-rich vapours above the thermal water table. As well as a surface coating of microbial mats and the presence of bacterial flakes in the thermal water, the vadose parts of the Aix-les-Bains hydrothermal karst contain a characteristic microfauna and flora. These microorganisms are thought to play an active role in hypogene karstification processes.


Results 1 to 15 of 17
You probably didn't submit anything to search for