Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That conformal mapping is the transposition and solution of plane flow problems in a complex plane [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
Engineering challenges in Karst, Stevanović, Zoran; Milanović, Petar
See all featured articles
Featured articles from other Geoscience Journals
Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy), Dimuccio, L.A.; Rodrigues, N.; Larocca, F.; Pratas, J.; Amado, A.M.; Batista de Carvalho, L.A.
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
See all featured articles from other geoscience journals

Search in KarstBase

Your search for micrite (Keyword) returned 17 results for the whole karstbase:
Showing 1 to 15 of 17
Shallow-marine carbonate facies and facies models, 1985, Tucker M. E. ,
Shallow-marine carbonate sediments occur in three settings: platforms, shelves and ramps. The facies patterns and sequences in these settings are distinctive. However, one type of setting can develop into another through sedimentational or tectonic processes and, in the geologic record, intermediate cases are common. Five major depositional mechanisms affect carbonate sediments, giving predictable facies sequences: (1) tidal flat progradation, (2) shelf-marginal reef progradation, (3) vertical accretion of subtidal carbonates, (4) migration of carbonate sand bodies and (5) resedimentation processes, especially shoreface sands to deeper subtidal environments by storms and off-shelf transport by slumps, debris flows and turbidity currents. Carbonate platforms are regionally extensive environments of shallow subtidal and intertidal sedimentation. Storms are the most important source of energy, moving sediment on to shoreline tidal flats, reworking shoreface sands and transporting them into areas of deeper water. Progradation of tidal flats, producing shallowing upward sequences is the dominant depositional process on platforms. Two basic types of tidal flat are distinguished: an active type, typical of shorelines of low sediment production rates and high meteorologic tidal range, characterized by tidal channels which rework the flats producing grainstone lenses and beds and shell lags, and prominent storm layers; and a passive type in areas of lower meteorologic tidal range and higher sediment production rates, characterized by an absence of channel deposits, much fenestral and cryptalgal peloidal micrite, few storm layers and possibly extensive mixing-zone dolomite. Fluctuations in sea-level strongly affect platform sedimentation. Shelves are relatively narrow depositional environments, characterized by a distinct break of slope at the shelf margin. Reefs and carbonate sand bodies typify the turbulent shelf margin and give way to a shelf lagoon, bordered by tidal flats and/or a beach-barrier system along the shoreline. Marginal reef complexes show a fore-reef--reef core--back reef facies arrangement, where there were organisms capable of producing a solid framework. There have been seven such phases through the Phanerozoic. Reef mounds, equivalent to modern patch reefs, are very variable in faunal composition, size and shape. They occur at shelf margins, but also within shelf lagoons and on platforms and ramps. Four stages of development can be distinguished, from little-solid reef with much skeletal debris through to an evolved reef-lagoon-debris halo system. Shelf-marginal carbonate sand bodies consist of skeletal and oolite grainstones. Windward, leeward and tide-dominated shelf margins have different types of carbonate sand body, giving distinctive facies models. Ramps slope gently from intertidal to basinal depths, with no major change in gradient. Nearshore, inner ramp carbonate sands of beach-barrier-tidal delta complexes and subtidal shoals give way to muddy sands and sandy muds of the outer ramp. The major depositional processes are seaward progradation of the inner sand belt and storm transport of shoreface sand out to the deep ramp. Most shallow-marine carbonate facies are represented throughout the geologic record. However, variations do occur and these are most clearly seen in shelf-margin facies, through the evolutionary pattern of frame-building organisms causing the erratic development of barrier reef complexes. There have been significant variations in the mineralogy of carbonate skeletons, ooids and syn-sedimentary cements through time, reflecting fluctuations in seawater chemistry, but the effect of these is largely in terms of diagenesis rather than facies

VOID-FILLING DEPOSITS IN KARST TERRAINS OF ISOLATED OCEANIC ISLANDS - A CASE-STUDY FROM TERTIARY CARBONATES OF THE CAYMAN-ISLANDS, 1992, Jones B. ,
Caves, fossil mouldic cavities, sinkholes and solution-widened joints are common in the Cayman and Pedro Castle members of the Bluff Formation (Oligocene Miocene) on Grand Cayman and Cayman Brac because they have been subjected to repeated periods of karst development over the last 30 million years. Many voids contain a diverse array of sediments and/or precipitates derived from marine or terrestrial environs, mineral aerosols, and groundwater. Exogenic sediment was transported to the cavities by oceanic storm waves, transgressive seas, runoff following tropical rain storms and/or in groundwater. At least three periods of deposition were responsible for the occlusion of voids in the Cayman and Pedro Castle members. Voids in the Cayman Member were initially filled or partly filled during the Late Oligocene and Early Miocene. This was terminated with the deposition of the Pedro Castle Member in the Middle Miocene. Subsequent exposure led to further karst development and void-filling sedimentation in both the Cayman and Pedro Castle members. Speleothems are notably absent. The void-filling deposits formed during these two periods, which were predominantly marine in origin, were pervasively dolomitized along with the host rock 2 5 million years ago. The third period of void-filling deposition. after dolomitization of the Bluff Formation, produced limestone, various types of breccia, terra rossa, speleothemic calcite and terrestrial oncoids. Most of these deposits formed since the Sangamon highstand 125 000 years ago. Voids in the present day karst are commonly filled or partly filled with unconsolidated sediments. Study of the Bluff Formation of Grand Cayman and Cayman Brac shows that karst terrains on isolated oceanic islands are characterized by complex successions of void-filling deposits that include speleothems and a variety of sediment types. The heterogenetic nature of these void-filling deposits is related to changes in sea level and climatic conditions through time

STABLE ISOTOPIC COMPOSITION OF METEORIC CALCITES - EVIDENCE FOR EARLY MISSISSIPPIAN CLIMATE-CHANGE IN THE MISSION CANYON FORMATION, MONTANA, 1993, Smith T. M. , Dorobek S. L. ,
The Lower Mississippian Mission Canyon Formation of central to southwestern Montana was deposited under dominantly semiarid to arid climatic conditions during Osagean to early Meramecian times. Following deposition, a pronounced climatic shift to more humid conditions occurred during middle Meramecian times. This climatic change is indicated by extensive, post-depositional karst fabrics and in the stable isotopic composition of early, meteoric calcite cements and diagenetically altered sediments. Early meteoric calcite cement in Mission Canyon limestones is generally nonluminescent and fills intergranular and fenestral porosity. Petrographic data indicate that this cement formed during intermittent subaerial exposure of the Mission Canyon platform during Osagean times. This initial generation of meteoric calcite cement has deltaO-18 values from -8.1 to -2.6 parts per thousand PDB. These data, and the oxygen isotopic values from nonluminescent skeletal grains and micrite in host limestone indicate that Osagean meteoric water may have had deltaO-18 values as low as -6.0 parts per thousand SMOW. A second generation of petrographically similar, but isotopically distinct, calcite cement fills biomolds and porosity within solution-collapse breccias in the Mission Canyon Formation. This cement generation postdates earlier nonluminescent Osagean calcite cement and is volumetrically most abundant near the top of the Mission Canyon Formation. DeltaO-18 values from these cements and from nonluminescent lime mudstone clasts and matrix in solution collapse breccias range from -13.8 to -8.2 parts per thousand PDB. These data indicate that Meramecian meteoric water may have had deltaO-18 values as low as - 12.0 parts per thousand. However, a higher-temperature burial overprint on the deltaO-18 values of the calcite cement cannot be ruled out. The more positive deltaO-18 values of the Osagean calcite components probably indicate warm and arid conditions during short-term [10(4)(?) yr) subaerial exposure along intraformational sequence and parasequence boundaries. The more negative deltaO-18 values from Meramecian calcite components and the extensive karst associated with the post-Mission Canyon unconformity may have developed because of cooler and more humid climatic conditions and possible rain-out effects during middle Meramecian times. A dramatic shift towards cooler and more humid climatic conditions may be coincident with the onset of major continental glaciation in the Early Carboniferous. The post-Mission Canyon unconformity has been attributed to a major fall in sea level that may have glacio-eustatic origins. Growth of continental glaciers during a time of global cooling would have caused migration of polar fronts further toward the paleoequator. These polar fronts in turn, would have pushed moist, mid-latitude weather systems toward the paleoequator, resulting in cooler, more humid conditions in low-latitude settings during ''icehouse'' times

PROCESSES ASSOCIATED WITH MICROBIAL BIOFILMS IN THE TWILIGHT ZONE OF CAVES - EXAMPLES FROM THE CAYMAN ISLANDS, 1995, Jones B. ,
The twilight zone of a cave, an environment transitional between the well-illuminated environment outside the cave and the dark environment of the cave interior, is one of the most unusual microenvironments of the karst terrain. Walls in the twilight zone of caves on Grand Cayman and Cayman Brac are coated with a biofilm that incorporates a diverse assemblage of epilithic microbes and copious mucus. Most microbes are different from those found elsewhere in the karst terrains of the Cayman Islands, probably because they have adapted to life in the poorly illuminated twilight zone. None of the microbes employ an endolithic life mode, and less than 10% of them show evidence of calcification. The biofilm does, however, provide a medium in which a broad spectrum of destructive and constructive processes operate. Etching, the dominant destructive process, produces residual dolomite, residual calcite, blocky calcite, and spiky calcite. Constructive processes include precipitation of calcite, dolomite, gypsum, halite, and sylvite. Although filamentous microbes are common, examples of detrital grains trapped and bound to the substrate are rare. Destructive processes are more common than constructive ones

ORIGIN OF ENDOGENETIC MICRITE IN KARST TERRAINS - A CASE-STUDY FROM THE CAYMAN ISLANDS, 1995, Jones B. , Kahle C. F. ,
Cavities in the dolostones of the Cayman Formation (Miocene) on Grand Cayman and Cayman Brac commonly contain spar calcite cements and/or a variety of exogenetic (derived from sources external to the bedrock) and endogenetic (derived from sources in the bedrock) internal sediments. Micrite is a common component in many of these internal sediments. The exogenetic micrite, which is typically laminated and commonly contains fragments of marine biota, originated from the nearby shallow lagoons. The endogenetic micrite formed as a residue from the breakdown of spar calcite crystals by etching, as constructive and destructive envelopes developed around spar calcite crystals, by calcification of microbes, by breakdown of calcified filamentous microbes, and by precipitation from pore waters. Once produced, the endogenetic micrite may be transported from its place of origin by water flowing through the cavities. Endogenetic micrite can become mixed with the exogenetic micrite. Subsequently, it is impossible to recognize the origin of individual particles because the particles in endogenetic micrite are morphologically like the particles in exogenetic micrite. Formation of endogenetic micrite is controlled by numerous extrinsic and intrinsic parameters. In the Cayman Formation, for example, most endogenetic micrite is produced by etching of meteoric calcite crystals that formed as a cement in the cavities or by microbial calcification. As a result, the distribution of the endogenetic micrite is ultimately controlled by the distribution of the calcite cement and/or the microbes-factors controlled by numerous other extrinsic variables. Irrespective of the factors involved in its formation, it is apparent that endogenetic micrite can be produced by a variety of processes that are operating in the confines of cavities in karst terrains

Origin of endogenetic micrite in karst terrains; a case study from the Cayman Islands, 1995, Jones Brian, Kahle Charles F. ,

Rillenkarren in the British Isles, 1996, Vincent P. ,
This paper presents the first descriptions of rillenkarren in the British Isles. Rillenkarren are widely developed at two 'classic' karst locations, namely: the Burren coast of Co. Clare, Ireland, and the Morecambe Bay area of north west England. Rillenkarren are also found on hard Cretaceous chalks of Northern Ireland and Carboniferous limestones on the Anglesey coast, north Wales. The limestones at all sires are very hard, extremely pure and dolomite poor. A logit regression model is developed, based on published rillenkarren data from the Napier Range, Western Australia. The model suggests that the two rock properties, % calcite in the rock fabric and % calcite in the micrite cement are key variables in explaining the presence of rillenkarren. Within the context of the model, these two explanatory variables define a feasible domain for the development of rillenkarren. British rillenkarren data satisfy the conditions of this model

Phototrophic Microorganisms of the Pamukkale, 1997, Pentecost Allan, Bayari Serdar , Yesertener Cahit
The travertines at Pamukkale contain a diverse assemblage of phototrophs: 17 species of cyanobacteria, 16 diatoms, and 5 Chlorophyceae. Two communities were recognized on the active travertines: (1) surficial mats dominated by filamentous cyanobacteria, particularly Lyngbya (Phormidium) laminosum forming soft weakly mineralized layers to 10 mm thick, and (2) a predominantly endolithic assemblage, also dominated by cyanobacteria developing 2-5 mm below the travertine surface. The distribution of these communities is determined largely by water flow and the degree of desiccation. Two further communities are briefly described from nondepositing areas. Most of the active travertine consists of alternating layers of micrite and sparite 0.25-0.75 mm in thickness, which probably result from short-term fluctuations in water flow rather than diel events (photosynthesis, temperature). The presence of needle-fiber calcite in surface samples suggests that evaporation of water may play some part in travertine formation. The phototrophs appear to influence the travertine fabric only locally, where the surficial growths contain strings of calcite crystals ad-hering to the filaments, forming irregularly laminated layers. The hot-spring water is believed to be contaminated with sewage and agricultural effluent, but there was no evidence to suggest that this is currently affecting the travertine deposits. The water is supersaturated with respect to calcite when it contacts the travertine, and precipitation is primarily the result of carbon dioxide evasion. Water chemistry and discharge measurements indicate a total travertine deposition rate of 35 tonnes per day.

The role of high-energy events (hurricanes and/or tsunamis) in the sedimentation, diagenesis and karst initiation of tropical shallow water carbonate platforms and atolls, 1998, Jan F. G. B. L. ,
Karst morphology appears early, even during carbonate sediment deposition. Examples from modern to 125-ka-old sub-, inter- and supratidal sediments are given from the Bahamas (Atlantic Ocean) and from Tuamotuan atolls (southeastern Pacific Ocean), with mineralogical and hydrological analyses. Karstification is favoured by the aragonitic composition of bioclasts coming from the shallow marine bio-factory. Lithification by aragonite cements appears as a rim around carbonate deposits and dissolution and non-cementation start at the same time on modern supratidal deposits (Andros micrite or atoll coral rudite) and provoke the formation of a central depression on small or large carbonate platforms. In fact, this early solution of the centre of platforms is closely related to the location of each of the studied examples on hurricane tracks. High-energy events, such as hurricanes and tsunamis, affect sediment transport but hurricanes also affect diagenesis as a result of the enormous volume of freshwater carried and discharged along their paths. This couple, lithification- solution, is localised at sea level and accompanies sea-level fluctuations along the eustatic curve. Because of the precise location of hurricane action all around the Earth, early karstification by aragonite solution, cementation and supratidal carbonate sediment accumulations thigh-energy trails) act together on all the platforms and atolls located inside the Tropics (23 degrees 27') between roughly 5 degrees-10 degrees and 25 degrees on both hemispheres. However, early karstification acts alone on shallow carbonate platforms including atolls along the equatorial belt between 5 degrees-10 degrees N and 5 degrees-10 degrees S. These early steps of karstification are linked to the ocean-atmosphere interface due to the bathymetrical position of shallow carbonate platforms, including atolls. They lead to complex karstified emerged platforms, called high carbonate islands, where carbonate diagenesis, together with the development of bauxite- and/or a phosphate-rich cover and phreatic lens, will occur. (C) 1998 Elsevier Science B.V. All rights reserved

Growth and demise of an Archean carbonate platform, Steep Rock Lake, Ontario, Canada, 1999, Kusky T. P. , Hudleston P. J. ,
The Steep Rock Group of northwest Ontario's Wabigoon subprovince is one of the world's thickest Archean carbonate platform successions. It was deposited unconformably over a 3001-2928 Ma gneissic terrane, and contains a remarkable group of biogenic and oolitic limestones, dolostones, micrites, and karat breccias capped by a thick paleosol developed between and over karst towers. The presence of aragonite fans, herringbone calcite, and rare gypsum molds suggests that the carbonate platform experienced at least local anaerobic and hypersaline depositional conditions. This sequence shows that a combination of chemical and biological processes was able to build a carbonate platform 500 m thick by 3 billion years ago. The carbonate platform is structurally overlain by a mixture of complexly deformed rocks of the Dismal Ashrock forming a melange with blocks of ultramafic volcaniclastic rocks, mafic volcanics, carbonate, tonalite, lenses of Fe-ore rock, and metasedimentary rocks, in a shaly, serpentinitic, and fragmental ultramafic volcaniclastic matrix. The melange shows evidence of polyphase deformation, with early high-strain fabrics formed at amphibolite facies, and later superimposed brittle fabrics related to the final emplacement of the melange over the carbonate platform. An amphibolite- through greenschist-grade shear zone marks the upper contact of the melange with overlying mafic volcanic and tuffaceous rocks of the ca. 2932 Ma Witch Bay allochthon, interpreted as a primitive island are sequence. We suggest an evolutionary model for the area that begins with rifting of an are sequence (Marmion Complex of the Wabigoon are) that initiated subsidence and sedimentation on the Steep Rock platform and its correlatives that extend for a restored strike length exceeding 1000 km. Shallow water carbonate sedimentation continued until the platform was uplifted on the flanks of a flexural bulge related to the approach of the Witch Bay allochthon, representing collision of the rifted are margin of the Wabigoon subprovince with the Witch Bay are. Melange of the Dismal Ashrock was formed as off-axis volcanic rocks were accreted to the base of the Witch Bay allochthon prior to its collision with the Steep Rock platform

Formation of dolomite mottling in Middle Triassic ramp carbonates (Southern Hungary), 2000, Torok A. ,
The Middle Triassic carbonates of the Villany Mountains were deposited on a homoclinal carbonate ramp. Many of the carbonates from the 700 m-thick sequence show partial or complete dolomitization. The present paper describes dolomites that occur in a limestone unit as irregular mottles and as pore- and fracture-filling cements. Replacement-type scattered dolomite rhombs in the mottles having inclusion-rich, very dull luminescent cores and limpid non-luminescent outer zones represent the initial phase of dolomitization. The isotopic composition of these dolomites (delta(13)C = .30 parts per thousand VPDB, delta(18)O = -3.60 parts per thousand VPDB) is similar to that of the calcitic micrite (delta(13)C = .6 parts per thousand VPDB, delta(18)O = -4.00 parts per thousand VPDB) indicating that no external fluids were introduced during dolomite formation. The elevated Sr content of the micrites implies that sediment was originally aragonite or high-Mg calcite. Dolomitization took place in the burial realm from a 'marine' pore-fluid in a partly closed system. Later fracture-related saddle dolomite reflects elevated formation temperatures and increasing burial. Five calcites were identified. Multiple generations of calcite-filled fractures were formed during burial diagenesis generally having dull or no luminescence (delta(13)C = .80 parts per thousand VPDB, delta(18)O = -6.40 parts per thousand VPDB). The latest phase calcites are related to karst formation, having a very negative isotopic composition (delta(13)C = -5.0 to -7.2 parts per thousand VPDB and delta(18)O approximate to -7.44 parts per thousand VPDB). The karst-related processes include dissolution, calcite precipitation and partial replacement of dolomites by complex zoned bright yellow calcite. The timing of dolomitization is uncertain, but the first phase took place in a partly closed system prior to stylolite formation. Late-stage saddle dolomites were precipitated during maximum burial in the Cretaceous. The dissolution of dolomites and karst-related calcite replacement was not earlier than Late Cretaceous. (C) 2000 Elsevier Science B.V. All rights reserved

Sedimentology and geochemistry of fluvio-lacustrine tufa deposits controlled by evaporite solution subsidence in the central Ebro Depression, NE Spain, 2000, Arenas C, Gutierrez F, Osacar C, Sancho C,
The Urrea de Jalon tufa deposits constitute the 20- to 50-m-thick caprock (0.3 km(2)) of an isolated mesa. They disconformably overlie horizontal strata of the Tertiary Ebro Basin (NE Spain), which contains a thick succession of lacustrine gypsum and marls, followed by limestones, marls and, locally, fluvial sandstones and mudstones. The tufa deposits show a complex, large-scale framework of basin-like structures with centripetal dips that decrease progressively from the base to the top of the tufa succession, and beds that thicken towards the centre of the structure (cumulative wedge-out systems). These geometries reveal that the tufa deposits were affected by differential synsedimentary subsidence. Distinct onlapping depressions reflect time migration of the subsiding areas. The studied carbonates are composed mostly of low-Mg calcite, with minor quartz. Some samples have anomalously high contents of Fe, Mn and Ba that may exceed 1% (goethite, haematite and barite are present). Carbonate facies are: (a) macrophyte encrustation deposits; (b) bryophyte build-ups; (c) oncolite and coated grain rudstones; (d) non-concentric stromatolite-like structures; (e) massive or bioturbated biomicrites; and (f) green and grey marls. Facies a and c show a great variety of microbial-related forms. These facies can be arranged in dm- to 2-m-thick vertical associations representing: (i) fluvial-paludal sequences with bryophyte growths; (ii) pond-influenced fluvial sequences; and (iii) lacustrine-palustrine sequences. The Urrea de Jalon tufa deposits formed in a fluvio-lacustrine environment that received little alluvial sediment supply. Isotope compositions (delta(13)C and delta(18)O) reveal meteoric signatures and accord with such a hydrologically open system of fresh waters. The Fe, Mn and Ba contents suggest an additional supply of mineralized waters that could be related to springs. These would have been discharge points in the Ebro Depression of a regional aquifer of the Iberian Ranges. Rising groundwater caused the solution of the underlying evaporites and the synsedimentary subsidence of the tufa deposits

Quaternary calcarenite stratigraphy on Lord Howe Island, southwestern Pacific Ocean and the record of coastal carbonate deposition, 2003, Brooke Bp, Woodroffe Cd, Murraywallace Cv, Heijnis H, Jones Bg,
Lord Howe Island is a small, mid-ocean volcanic and carbonate island in the southwestern Pacific Ocean. Skeletal carbonate eolianite and beach calcarenite on the island are divisible into two formations based on lithostratigraphy. The Searles Point Formation comprises eolianite units bounded by clay-rich paleosols. Pore-filling sparite and microsparite are the dominant cements in these eolianite units, and recrystallised grains are common. Outcrops exhibit karst features such as dolines, caves and subaerially exposed relict speleothems. The Neds Beach Formation overlies the Searles Point Formation and consists of dune and beach units bounded by weakly developed fossil soil horizons. These younger deposits are characterised by grain-contact and meniscus cements, with patchy pore-filling micrite and mirosparite. The calcarenite comprises several disparate successions that contain a record of up to 7 discrete phases of deposition. A chronology is constructed based on U/Th ages of speleothems and corals, TL ages of dune and paleosols, AMS 14C and amino acid racemization (AAR) dating of land snails and AAR whole-rock dating of eolianite. These data indicate dune units and paleosols of the Searles Point Formation were emplaced during oxygen isotope stage (OIS) 7 and earlier in the Middle Pleistocene. Beach units of the Neds Beach Formation were deposited during OIS 5e while dune units were deposited during two major phases, the first coeval with or shortly after the beach units, the second later during OIS 5 (e.g. OIS 5a) when the older dune and beach units were buried.Large-scale exposures and morphostratigraphical features indicate much of the carbonate was emplaced as transverse and climbing dunes, with the sediment source located seaward of and several metres below the present shoreline. The lateral extent and thickness of the eolianite deposits contrast markedly with the relatively small modern dunes. These features indicate that a slight fall (2-10 m) in sea level may be required to mobilise relatively large volumes of sediment onto the island. The stratigraphy of the calcarenite, combined with the shallow depth of the platform surrounding the island (30-50 m present water depth) and the geochronological data, suggest that cycles of carbonate deposition on the island are linked to interglacial and interstadial periods of high or falling sea level

The influence of the geological setting on the morphogenetic evolution of the Tremiti Archipelago (Apulia, Southeastern Italy), 2005, Andriani Gk, Walsh N, Pagliarulo R,
The Tremiti Archipelago (Southern Adriatic Sea), also called Insulae Diomedae from the name of the Greek hero who first landed there, is an area of high landscape and historical value. It is severely affected by significant geomorphologic processes dominated by mass movements along the coast that constitute the most important and unpredictable natural hazard for the population and cultural heritage. Coastal erosion is favoured by the peculiar geological and structural setting, seismic activity, weathering, development of karst processes, and wave action. The present paper reports on descriptive and qualitative evaluation of the factors controlling landslides and coastline changes based on medium-term in situ observation, detailed surface surveys at selected locations since 1995, and historic and bibliographic data. The Tremiti Archipelago is part of an active seismic area characterised by a shear zone separating two segments of the Adriatic microplate that have shown different behaviour and roll back rates in the subduction underneath the Apennines since middle Pleistocene. Although coastal morphology can be basically considered to be the result of wave action, the continual action of subaerial processes contributes effectively to the mechanism of shoreline degradation. Weathering mainly affects the marly calcisiltites and calcilutites of the Cretaccio Fm. and the friable and low cemented calcarenites and biomicrites of the San Nicola Fm. The cliffs are characterised by different types of failure such as lateral spreads, secondary topples, rock falls and slides. At the Isle of San Nicola, landslides are controlled by the contrast in competence, shear strength and stiffness between the Pliocene re-crystallised dolomitic calcarenites and calcisiltites and the Miocene marly calcilutites and calcisiltites. At the Isles of San Domino and Caprara rock falls are attributed to the undercutting of waves at the base of the cliffs

Petrographic and geochemical study on cave pearls from Kanaan Cave (Lebanon), 2007, Nader Fadi. H.
The Kanaan cave is situated at the coastal zone, north of Beirut City (capital of Lebanon). The cave is located within the upper part of the Jurassic Kesrouane Formation (Liassic to Oxfordian) which consists mainly of micritic limestone. Twenty seven cave pearls were subjected to petrographic (conventional and scanning electron microscopy) and geochemical analyses (major/trace elements and stable isotopes). The cave pearls were found in an agitated splash-pool with low mud content. They are believed to have formed through chemical precipitation of calcite in water over-saturated with calcium. The nucleus and micritic laminae show ? 18OV-PDB values of about -5.0 and ? 13C V-PDB values of -11.8, while the surrounding calcite spar laminae resulted in ?18OV-PDB ranging between -5.3 and -5.2, and ? 13C V-PDB between -12.3 and -12.1. A genesis/diagenesis model for these speleothems is proposed involving recrystallization which has selectively affected the inner layers of the cave pearls. This is chiefly invoked by sparry calcite crystals invading the inner micrite cortical laminae and the nuclei (cross-cutting the pre-existing mud-envelopes), and the slight depletion in ? 18O values from inner to outer cortical layers. The calculated ? 18OV-SMOW of the water (-4.2) matches with data on meteoric water signature for the central eastern Mediterranean region.

Results 1 to 15 of 17
You probably didn't submit anything to search for