Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That oolitic is of spherical or ovoidal shape [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for midcontinent (Keyword) returned 8 results for the whole karstbase:
Glaciation and saline-freshwater mixing as a possible cause of cave formation in the eastern Midcontinent region of the United States; a conceptual model, 1990, Panno Samuel V. , Bourcier William L. ,

CHEMICAL-REACTION PATH MODELING OF ORE DEPOSITION IN MISSISSIPPI VALLEY-TYPE PB-ZN DEPOSITS OF THE OZARK REGION UNITED-STATES MIDCONTINENT, 1994, Plumlee G. S. , Leach D. L. , Hofstra A. H. , Landis G. P. , Rowan E. L. , Viets J. G. ,
The Ozark region of the U.S. midcontinent is host to a number of Mississippi Valley-type districts, including the world-class Viburnum Trend, Old Lead Belt, and Tri-State districts and the smaller Southeast Missouri barite, Northern Arkansas, and Central Missouri districts. There is increasing evidence that the Ozark Mississippi Valley-type districts formed locally within a large, interconnected hydrothermal system that also produced broad fringing areas of trace mineralization, extensive subtle hydrothermal alteration, broad thermal anomalies, and regional deposition of hydrothermal dolomite cement. The fluid drive was provided by gravity flow accompanying uplift of foreland thrust belts during the Late Pennsylvanian to Early Permian Ouachita orogeny. In this study, we use chemical speciation and reaction path calculations, based on quantitative chemical analyses of fluid inclusions, to constrain likely hydrothermal brine compositions and to determine which precipitation mechanisms are consistent with the hydrothermal mineral assemblages observed regionally and locally within each Mississippi Valley-type district in the Ozark region. Deposition of the regional hydrothermal dolomite cement with trace sulfides likely occurred in response to near-isothermal effervescence of CO2 from basinal brines as they migrated to shallower crustal levels and lower confining pressures. In contrast, our calculations indicate that no one depositional process can reproduce the mineral assemblages and proportions of minerals observed in each Ozark ore district; rather, individual districts require specific depositional mechanisms that reflect the local host-rock composition, structural setting, and hydrology. Both the Northern Arkansas and Tri-State districts are localized by normal faults that likely allowed brines to rise from deeper Cambrian-Ordovician dolostone aquifers into shallower carbonate sequences dominated by limestones. In the Northern Arkansas district, jasperoid preferentially replaced limestones in the mixed dolostone-limestone sedimentary packages. Modeling results indicate that the ore and alteration assemblages in the Tri-State and Northern Arkansas districts resulted from the flow of initially dolomite-saturated brines into cooler limestones. Adjacent to fluid conduits where water/rock ratios were the highest, the limestone was replaced by dolomite. As the fluids moved outward into cooler limestone, jasperoid and sulfide replaced limestone. Isothermal boiling of the ore fluids may have produced open-space filling of hydrothermal dolomite with minor sulfides in breccia and fault zones. Local mixing of the regional brine with locally derived sulfur undoubtedly played a role in the development of sulfide-rich ore runs. Sulfide ores of the Central Missouri district are largely open-space filling of sphalerite plus minor galena in dolostone karst features localized along a broad anticline. Hydrothermal solution collapse during ore deposition was a minor process, indicating dolomite was slightly undersaturated during ore deposition. No silicification and only minor hydrothermal dolomite is present in the ore deposits. The reaction path that best explains the features of the Central Missouri sulfide deposits is the near-isothermal mixing of two dolomite-saturated fluids with different H2S and metal contents. Paleokarst features may have allowed the regional brine to rise stratigraphically and mix with locally derived, H2S-rich fluids

TECTONIC AND PALEOCLIMATIC SIGNIFICANCE OF A PROMINENT UPPER PENNSYLVANIAN (VIRGILIAN STEPHANIAN) WEATHERING PROFILE, IOWA AND NEBRASKA, USA, 1995, Joeckel R. M. ,
A Virgilian (Stephanian) weathering profile up to 4 m deep, containing a paleosol (basal Rakes Creek paleosol) in the basal mudstone of the Rakes Creek Member and karstified marine sediments in the Ost, Kenosha, and Avoca members below, is restricted to southeastern Nebraska (specifically the Weeping Water Valley) and the Missouri River Valley bluffs of adjacent easternmost Iowa. This weathering profile, informally referred to as the Weeping Water weathering profile, disappears farther eastward into the shallow Forest City Basin in southwestern Iowa. Weeping Water weathering profile features are prominent in comparison to other Midcontinent Pennsylvanian subaerial exposure surfaces, indicating prolonged subaerial exposure, relatively high elevation, and a marked drop in water table along the Nemaha Uplift in southeastern Nebraska. Eastward, on the margin of the Forest City Basin, the basal Rakes Creek paleosol and underlying karst are thinner and relatively poorly developed; paleosol characteristics indicate formation on lower landscape positions. Comparative pedology, the contrasting of paleosol variability, morphology, and micromorphology between different paleosols in the same regional succession, provides a basis for interpreting the larger significance of the basal Rakes Creek paleosol. The stratigraphically older upper Lawrence and Snyderville paleosols in the same area are significantly different in patterns of lateral variability and overall soil characteristics. Weaker eustatic control and stronger tectonic activity may explain the greater west-east variability (and eventual eastward disappearance) of the basal Rakes Creek paleosol. Differences in soil characteristics between the Vertisol-like upper Lawrence and Snyderville paleosols and the non-Vertisol-like basal Rakes Creek paleosol appear to be due to climate change, particularly a shift from more seasonal to more uniform rainfall. This climate change hypothesis is compatible with overall Virgilian stratigraphic trends in the northern Midcontinent outcrop area

Occurrence and significance of stalactites within the epithermal deposits at Creede, Colorado, 1996, Campbell Wr, Barton Pb,
In addition to the common and abundant features in karst terranes, stalactites involving a wide variety of minerals have also been found in other settings, including epigenetic mineral deposits, bur these are almost always associated with supergene stages. Here we describe a different mode of occurrence from the Creede epithermal ore deposits, in Colorado, wherein stalactites of silica, sphalerite, galena, or pyrite formed in a vapor-dominated setting, below the paleo-water table, and except possibly for pyrite, as part of the hypogene mineralization. Axial cavities may, or may not, be present. No stalagmites have been recognized. The stalactites are small, from a few millimeters to a few centimeters long and a few millimeters in outer diameter. They represent only a small fraction of one percent of the total mineralization, and are covered by later crystals. Their growth orientation usually is unobservable; however, the parallel arrangement of all stalactites in a given specimen, consistency with indicators of gravitational settling, and the common presence of axial structures make the stalactitic interpretation almost unavoidable. In contrast with common carbonate stalactites, the growth mechanism for th sulfide and silica stalactites requires extensive evaporation. Stalactitic forms have also been reported from other deposits, mostly epithermal or Mississippi Valley-type occurrences, but we caution that stalactite-like features can form by alternative processes

Climate and Vegetation History of the Midcontinent from 75 to 25 ka: A Speleothem Record from Crevice Cave, Missouri, USA, 1998, Dorale Ja, Edwards Rl, Ito E, Lez La,

Diagenetic History of Pipe Creek Jr. Reef, Silurian, North-Central Indiana, U.S.A, 2000, Simo J. A. , Lehmann Patrick J. ,
Calcite cements in the Silurian (Ludlovian) Pipe Creek Jr. Reef, north-central Indiana, are compositionally zoned with characteristic minor-element concentrations and stable-isotope signatures, and were precipitated in different diagenetic environments. Superposition and crosscutting relationships allow us to group cement zones and to relate them to the sequence stratigraphic evolution of the reef. Pipe Creek Jr. Reef grew in normal marine waters, with the reef top high (greater than 50 m) above the platform floor. Flank facies are volumetrically important and are preserved largely as limestone, in contrast to most dolomitized Silurian reefs in the midcontinent. Syndepositional marine cements fill primary porosity and synsedimentary fractures and are interlayered with marine internal sediment. Now low-magnesium calcite, their isotopic compositions are similar to those of depositional grains and cements estimated to have precipitated from Ludlovian sea waters. Depositional porosity was reduced by 75% by the precipitation of these syndepositional cements, which stabilized the steeply dipping flank slope. Postdepositional, clear calcite cements are interpreted as shallow-phreatic and burial cements on the basis of their relationship to periods of karstification and fracturing. Shallow-phreatic cements, with concentric cathodoluminescent (CL) zonation, precipitated in primary pores and are postdated by fractures and caves filled with Middle Devonian sandstone. CL zonal boundaries are sharp, and some, near a major stratigraphic unconformity, show evidence of dissolution. The volumetric abundance of the individual CL zones varies in the reef, indicating a complex superposition of waters of varying chemistry and rock-water interaction that are probably related to relative sea-level changes. This important aspect of the reef stratigraphy is recorded only by the diagenetic succession, because evidence of earlier sea-level changes is removed by a major later regional unconformity. Burial cements are the youngest diagenetic feature recognized, and they rest conformably or unconformably over older cements. They exhibit both concentric CL zonation and sectoral zoning, they are ferroan to nonferroan, and they contain thin sulfide zones along growth-band boundaries. Their isotopic compositions do not overlap with shallow-phreatic or marine cement values. Degraded oil postdates burial cements, and is composed of the same sterane class as the Devonian-age Antrim Shale, the probable source rock. This source contrasts with that of reef reservoirs in the Michigan Basin, where Silurian strata are commonly the hydrocarbon source

Geological and geotechnical context of cover collapse and subsidence in mid-continent US clay-mantled karst, 2002, Cooley T,
This paper presents a synthesis of geologic and geotechnical concepts to present a unified model of conditions controlling The development of cover-collapse sinkholes and associated ground subsidence. Appropriate engineering response to the hazards associated with collapse and subsidence requires a full understanding of the underlying mechanisms that produce such effects. The geotechnical characteristics of the overlying clay mantle and occurrence of the associated cover-collapse features are not random, but rather are directly tied to the underlying water flow routes and their development through time. The clay mantle and underlying epikarst are two components of a single system, each of the components influencing the other. This paper brings together these two aspects in terms of the author's personal experience and observations as a geologist, geotechnical engineer, hydrogeologist, and caver. A summary of the basic model follows. Much of the clay mantle and pinnacled upper surface of the epikarst form while surface drainage still prevails. At this stage, the karst underdrains are insufficiently developed to transport soils, although some subsidence into cutters occurs because of dissolutional rock removal. Soil arches and macropore flow routes associated with cutters have developed by this stage. As competent deep conduits extend into the area by headward linking, the cutters with the most favorable drains are linked to the conduits first and act as attractors for the development of a tributary, laterally integrated drainage system in the epikarst. Once the most efficient cutter drains become competent to transport soils, the depressed top-of-rock and ground surfaces characteristic of dolines develop. A given doline underdrain is likely to have multiple tributary drains from adjacent cutters, which vary in soil transport competence. Soil stiffness in the clay mantle over the limestone varies as a result of the pattern of stresses imposed as the underlying rock surface is lowered by dissolution and later as soil piping locally removes soils. In the absence of karst, these soils would have developed a laterally uniform, stiff to very stiff consistency. Where soil near the soil-bedrock interface is locally removed, however, the weight of the materials overlying this void is transferred to abutment zones on the pinnacles by soil arches. Local soil loading in the abutment areas of these arches would increase at least on the-order of 50% in the case of an isolated cavity. In some cases, multiple closely spaced cutters whose soil arches have narrow, laterally constrained abutment zones bearing on the intervening pinnacles may produce substantially higher soil abutment stresses. If the clays in the abutment zones do not fail, they would respond to this increase in stress by consolidating: stiffening and decreasing in volume. The cutters spanned by the soil arches accumulate raveled soils that are 'under-consolidated', the soft zones noted between pinnacles by Sowers. A simple integral of stresses analysis makes it obvious, however that no continuous soft zone exists. It is the transfer of load to the pinnacles through the stiffened abutment soils that allows these locally soft areas to exist. Soil stiffness profiles from borings substantiate this pattern. Cover-collapse features develop where soil transport through cutter drains is sufficient to remove the soils from beneath these arched areas. Two types of collapse have been observed: type I collapses have an upward-stoping open void whose rubble pile is removed by transport as fast as it is generated, producing a deep, steep-sided final collapses. In some cases, multiple voids in clusters can form with narrow abutments separating them. Large collapses may involve a progressive failure of several members of a cluster, including intervening pillars. Type 2 features are soil-filled voids limited in their rate of upward growth by the rate of soil removal, have little open void space, and migrate to the ground surface as a column of soft soils, finally producing a shallow depression. The type 2 features have geotechnical significance because of their effect on settlement under imposed loads. A single underdrain system may service both types of features, the behavior of particular voids being dependent on the relative efficiencies of their drains. This behavior can also change with time because backfilling of the underdrains with soil or flushing out of the soil filling can occur with changes in hydrologic or erosional regimes

Benchmark Papers in Karst Science, 2007,
A collection of benchmark papers in karst science: The Decade 1971 ? 1980 13. The Geochemistry of Some Carbonate Ground Waters in Central Pennsylvania, D. Langmuir 14. Genetic Interpretation of Regressive Evolutionary Processes: Studies on Hybrid Eyes of Two Astyanax Cave Populations (Characidae, Pisces), H. Wilkins 15. Cavernicoles in Lava Tubes on the Island of Hawaii, F.G. Howarth 16. Evolutionary Genetics of Cave-Dwelling Fishes of the Genus Astyanax, J.C. Avise and R.L. Selander 17. Deducing Flow Velocity in Cave Conduits from Scallops, R.L. Curl 18. The Origin of Maze Caves, A.N. Palmer 19. Foraging by Cave Beetles: Spatial and Temporal Heterogeneity of Prey, T.C. Kane and T.L. Poulson 20. Considerations of the Karst Ecosystem, R. Rouch 21. Diffuse Flow and Conduit Flow in Limestone Terrain in the Mendip Hills, Somerset (Great Britain), T.C. Atkinson 22. The Development of Limestone Cave Systems in Dimensions of Length and Depth, D.C. Ford and R.O. Ewers The Decade 1981 ? 1990 23. Magnetostratigraphy of Sediments in Mammoth Cave, Kentucky, V.A. Schmidt 24. Uranium-Series Ages of Speleothem from Northwest England: Correlations with Quaternary Climate, M. Gascoyne, D.C. Ford and H.P. Schwarcz 25. Analysis and Interpretation of Data from Tracer Tests in Karst Areas, W.K. Jones 26. Evolution of Adult Morphology and Life-History Characters in Cavernicolous Ptomaphagus Beetles, S.B. Peck 27. Ecology of the Mixohaline Hypogean Fauna along the Yugoslav Coasts, B. Sket 28. Fractal Dimensions and Geometries of Caves, R.L. Curl 29. Regional Scale Transport in a Karst Aquifer. 1. Component Separation of Spring Flow Hydrographs, S.J. Dreiss 30. Morphological Evolution of the Amphipod Gammarus minus in Caves: Quantitative Genetic Analysis, D.W. Fong 31. The Flank Margin Model for Dissolution Cave Development in Carbonate Platforms, J.E. Mylroie and J.L. Carew 32. Sulfuric Acid Speleogenesis of Carlsbad Cavern and Its Relationship to Hydrocarbons, Delaware Basin, New Mexico and Texas, C.A. Hill The Decade 1991 ? 2000 33. Origin and Morphology of Limestone Caves, A.N. Palmer 34. How Many Species of Troglobites Are There? D.C. Culver and J.R. Holsinger 35. Annual Growth Banding in a Cave Stalagmite, A. Baker, P.L. Smart, R.L. Edwards and D.A. Richards 36. Natural Environment Change in Karst: The Quaternary Record, S.-E. Lauritzen 37. Pattern and Process in the Biogeography of Subterranean Amphipods, J.R. Holsinger 38. A Chemoautotrophically Based Cave Ecosystem, S.M. Sarbu, T.C. Kane and B.K. Kinkle 39. Rhodopsin Evolution in the Dark, K.A. Crandall and D.M. Hillis 40. Climate and Vegetation History of the Midcontinent from 75 to 25 ka: A Speleothem Record from Crevice Cave, Missouri, USA, J.A. Dorale, R.L. Edwards, E. Ito and L.A. González

Results 1 to 8 of 8
You probably didn't submit anything to search for