Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That hall is in a cave, a lofty chamber which is much longer than it is wide [10]. see also gallery.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for mineralization (Keyword) returned 109 results for the whole karstbase:
Showing 1 to 15 of 109
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, , Bontognali Tomaso R. R. , D’angeli Ilenia M. , Tisato Nicola, Vasconcelos Crisogono, Bernasconi Stefano M. , Gonzales Esteban R. G. , De Waele Jo

Unusual speleothems resembling giant mushrooms occur in Cueva Grande de Santa
Catalina, Cuba. Although these mineral buildups are considered a natural heritage, their
composition and formation mechanism remain poorly understood. Here we characterize
their morphology and mineralogy and present a model for their genesis. We propose that
the mushrooms, which are mainly comprised of calcite and aragonite, formed during four
different phases within an evolving cave environment. The stipe of the mushroom is an
assemblage of three well-known speleothems: a stalagmite surrounded by calcite rafts
that were subsequently encrusted by cave clouds (mammillaries). More peculiar is the
cap of the mushroom, which is morphologically similar to cerebroid stromatolites and
thrombolites of microbial origin occurring in marine environments. Scanning electron
microscopy (SEM) investigations of this last unit revealed the presence of fossilized
extracellular polymeric substances (EPS)—the constituents of biofilms and microbial
mats. These organic microstructures are mineralized with Ca-carbonate, suggesting that
the mushroom cap formed through a microbially-influenced mineralization process. The
existence of cerebroid Ca-carbonate buildups forming in dark caves (i.e., in the absence
of phototrophs) has interesting implications for the study of fossil microbialites preserved
in ancient rocks, which are today considered as one of the earliest evidence for life on

Secondary Mineralization in Wind Cave, South Dakota, 1962, White William B. , Deikeiii George H.

Genesis of the Ordovician zinc deposits in east Tennessee, 1965, Hoagland Alan D. , Hill William T. , Fulweiler Robert E. ,
Zinc occurs in low-iron sphalerite associated with gangue dolomite in dissolution breccias and collapse structures in dolomitized limestone and interbedded fine-grained 'primary' dolomite. These breccias and collapse structures were developed as part of a karst-sinkhole complex formed at depths up to 800 feet below the top of the Knox Dolomite during widespread emergence at the end of Early Ordovician time. Mineralization was completed before the rocks were tilted, and clearly antedates the Appalachian orogeny. Source of hydrothermal solutions is not known

Identification of the origin of oreforming solutions by the use of stable isotopes, 1977, Sheppard S. M. F. ,
SynopsisThe four major different types of water -- magmatic, metamorphic, sea water and/or connate, and meteoric water -- have characteristic hydrogen (D/H) and oxygen (18O/16O) isotope ratios. Applied to the analysis of isotopic data on hydrothermal minerals, fluid inclusions and waters from active geothermal systems, these ratios indicate that waters of several origins are involved with ore deposition in the volcanic and epizonal intrusive environment. Water of a single origin dominates main-stage mineralization in some deposits: magmatic -- Casapalca, Peru (Ag-Pb-Zn-Cu); meteoric -- Butte, Montana (Cu-Zn-Mn), epithermal deposits, e.g. Goldfield, Tonopah, Nevada (Ag-Au), Pachuca, Mexico (Ag-Au), San Juan Mountains District, Colorado (Ag-Au-Pb-Zn); sea water -- Troodos, Cyprus (Fe-Cu), Kuroko, Japan (Fe-Cu-Pb-Zn). Solutions of more than one origin are important in certain deposits (magmatic and meteoric -- porphyry copper and molybdenum deposits) and are present in many. In the porphyry Cu-Mo deposits the initial major ore transportation and alteration processes (K-feldspar-biotite alteration) are magmatic-hydrothermal events that occur at 750-500{degrees}C. These fluids are typically highly saline Na-K-Ca-Cl-rich brines (more than 15 wt % equivalent NaCl). The convecting meteoric-hydrothermal system that develops in the surrounding country rocks with relatively low integrated water/rock ratios (less than 0.5 atom % oxygen) subsequently collapses in on a waning magmatic-hydrothermal system at about 350-200{degrees}C. These fluids generally have moderate to low salinities (less than 15 wt % equivalent NaCl). Differences among these deposits are probably in part related to variations in the relative importance of the meteoric-hydrothermal versus the magmatic-hydrothermal events. The sulphur comes from the intrusion and possibly also from the country rocks. Deposits in which meteoric or sea water is the dominant constituent of the hydrothermal fluids come from epizonal intrusive and sub-oceanic environments where the volcanic country rocks are fractured or well jointed and highly permeable. Integrated water/rock ratios are typically high, with minimum values of 0.5 or higher (atom % oxygen) -- the magmatic water contribution is often drowned out'. Salinities are low to very low (less than 10 wt % equivalent NaCl), and temperatures are usually in the range 350-150{degrees}C. The intrusion supplies the energy to drive the large-scale convective circulation system. The sulphur comes from the intrusion, the country rocks and/or the sea water. Argillic alteration, which occurs to depths of several hundred metres, generated during supergene weathering in many of these deposits is isotopically distinguishable from hydrothermal clays

The Coxco Deposit; a Proterozoic mississippi valley-type deposit in the McArthur River District, Northern Territory, Australia, 1983, Walker R. N. , Gulson B. , Smith J. ,
Strata-bound dolomite-hosted lead-zinc deposit. Crusts of colloform sphalerite, galena, pyrite, and marcasite (stage I mineralization) were deposited on the surfaces of the karst-produced solution cavities. Reduced sulfur was produced by sulfate-reducing bacteria within the karst system. A second stage of mineralization consisting of coarsely crystalline sphalerite, galena, pyrite, and marcasite occurs in veins and as the matrix for dolomite breccias.--Modified journal abstract

Karstic residual fluorite-baryte deposits at two localities in Derbyshire, 1983, Shaw R. P. ,
Various karst processes may rework primary mineralization producing secondary ore deposits in a variety of karstic cavities both on the surface and underground. Two surface localities, on Bonsall Moor, near Matlock, and near Castleton are filled with sediments containing locally derived fluorite and baryte clasts, in sufficient quantity to be worked as ore deposits. The associated clastic sediments are of Pleistocene fluvioglacial origin

Mineralization of breccia pipes in northern Arizona, 1985, Wenrich Karen J. ,

Geologic and geochemical controls of mineralization in the southeast Missouri barite district, 1987, Kaiser C. J. , Kelly W. C. , Wagner R. J. , Shanks W. C.

Origin of major karst-associated celestite mineralization in Karstryggen, central East Greenland, 1990, Scholle Peter A. , Stemmerik Lars, Harpoth Ole,

The Hammam Zriba mine is located in a lenticular horst structure, of varying width (0.3 to 1 km) and NNW-SSE strike over about 3 kms. The mineralization is strata-bound at the top of massive Portlandian limestones and is overlain by embedded Middle to Upper Campanian limestones with marl intercalations. This horst has formed during the late Jurassic as an emerged block bound by major faults that were remobilized later during various deformation stages. These facts are clearly documented by field observations and tectonic analysis essentially along the N160-N180 trending faults in the Portlandian lithofacies. These fractures have also controlled the palaeomorphological framework of the uppermost part of the Portlandian massive facies. The overlying Campanian unit exhibits onlap structures that rest on the irregular eroded karstified and mineralized surface which forms a screen surface for the upward channelized fluids and mineral formations in karst and graben. Fluids were apparently channelized by faults trending N070-N090 and N160-180, a few hundred metres long, that have facilitated karst, dissolution and mineral deposition during tectonic events

The lead-zinc ore deposits of the Siding-Gudan mineral subdistrict Guangxi are part of the large Nanling district of South China, and hosted in Devonian carbonate rocks. The ore bodies occur significantly along main faults and fault zones, and concentrate up to 300 meters above the Cambrian/Devonian unconformity. Connected with hydrothermal karst, size and volume of the ore bodies increase in proximity to this unconformity. Moving from the unaffected host rocks to the center of the ore bodies, four zones can be discriminated by the mineral assemblage (pyrite, sphalerite, galena) as well as by the degree of ordering, Ca/Mg, and Fe/Mn ratios of different dolomites. Homogenization temperatures range from 80-100-degrees-C (Presqu'ile dolomite) to 230-260-degrees-C (massive sphalerite). The sulfides reveal delta-S-34 = -20 to parts per thousand, and fluid inclusions display a salinity of 5-12 wt % equivalent NaCl. The diagenetic and hydrothermal history is similar to that of classic Mississippi Valley Type (MVT) sulfide mineral deposits as, for example, Pine Point in Canada. Mineralization and remobilization of the sulfides took place during a wide time span from late Paleozoic through Mesozoic. Both processes are considered as an interaction of saline basinal brines ascended from the adjoining dewatering trough, and magmatic-hydrothermal fluids of several magmatic-tectonic events

Late to post-Hercynian hydrothermal activity and mineralization in Southwest Sardinia (Italy), 1992, Boni M, Iannace A, Koeppel V, Fruehgreen Gl, Hansmann W,

Several kinds of base metal deposits occur in the lower Paleozoic of southwest Sardinia (Iglesiente-Sulcis mineral district). This paper deals with those deposits which are generally referred to as Permo-Triassic, because they accompany and postdate the Hercynian orogeny and are related to magmatic activity. A large number of previously published geochemical data, integrated with additional new data (Sr, Pb, O, C, and S isotopes), are reviewed and discussed in the frame of the late to post-Hercynian geologic evolution of southwest Sardinia. According to geological and mineralogical characteristics, three types of deposits can be distinguished: (1) skarn ores related to late Hercynian leucogranitic intrusions, (2) high-temperature veins, and (3) low-temperature veins and karst filling. Pervasive epigenetic dolomitization phenomena are geochemically related to the low-temperature deposits. Sr and Pb isotopes of the first and second types (0.7097-0.7140 Sr-87/Sr-86; 17.97-18.29 Pb-206/Pb-204; 38.11-38.45 Pb-208/Pb-204) are distinctly more radiogenic than those of the third type (0.7094-0.7115 Sr-87/Sr-86; 17.86-18.05 Pb-206/Pb-204; 37.95-38.19 Pb-208/Pb-204) which, in turn, are closer to Paleozoic ores and carbonates. Fluid inclusion data indicate that the fluids responsible for mineralization of the first and second types of deposits were hot and dilute (T(h)= 370-degrees-140-degrees-C; <5 wt % NaCl equiv). In contrast, relatively colder and very saline fluids (T(h)= 140-degrees-70-degrees-C; >20 wt % NaCl equiv) were responsible for the third type of mineralization, as well for epigenetic dolomitization of the Cambrian host rocks. O isotopes measured in minerals from the first two types (deltaO-18SMOW = 12.8-18.9 parts per thousand) are O-18 depleted with respect to the third type (deltaO-18SMOW = 15.9-22.1 parts per thousand). These data, coupled with fluid inclusion formation temperatures, indicate that the fluids responsible for the first two types of mineralization were O-18 enriched with respect to those of the third type and related hydrothermal phenomena. The deltaS-34CDT in sulfides of the first two types vary between 3.7 and 10.73 per mil, whereas the values of the third type range from 12.0 to 17.9 per mil. Late to post-Hercynian mineralization is thus explained as the result of three distinct, though partly superimposed, hydrothermal systems. System 1 developed closer to the late Hercynian leucogranitic intrusions and led to the formation of the first and subsequently the second type of mineralization. The relatively hot and diluted fluids had a heated meteoric, or even partly magmatic, origin. Metals were leached from an external, radiogenic source, represented either by Hercynian leucogranites or by Paleozoic metasediments. Sulfur had a partly magmatic signature. System 2 was characterized by very saline, colder fluids which promoted dolomitization, silicification, and vein and karst mineralization. These fluids share the typical characteristics of formation waters, even though their origins remain highly speculative. The hydrothermal system was mainly rock dominated, with only a minor participation of the external radiogenic source of metals. Sulfur was derived by recirculation of pre-Hercynian strata-bound ores. System 3 records the invasion of fresh and cold meteoric waters which precipitated only minor ore and calcite gangue. It may represent the further evolution of system 2, possibly spanning a time well after the Permo-Triassic. The timing of all these phenomena is still questionable, due to the poor geologic record of the Permo-Triassic in southwest Sardinia. Nevertheless, the hypothesized scenario bears many similarities with hydrothermal processes documented throughout the Hercynian in Europe and spanning the same time interval. A comparison with the latter mineralization and hydrothermal activities leads to the hypothesis that the first two types of mineralization are linked to late Hercynian magmatic activity, whereas the third type may be related to either strike-slip or tensional tectonics which, throughout Europe mark the transition from the Hercynian orogeny to the Alpine cycle

Geology and mineralization of the Pokorny sulfur deposit, Culberson county, Texas, 1992, Klemmick G. F.

La grotte de la Movile (Dobroudja, Roumanie) : analyses _minralogiques, 1993, Diaconu G. , Morar M.
The authors present the results of X-ray analyses which, in the Movile cave, give evidence of the presence of a mineralogical association made up of calcite, aragonite, ankerite and quartz. They also take into consideration the conditions of a specific genesis for this cave which has been particularly affected by sulphurous thermomineral waters.

Results 1 to 15 of 109
You probably didn't submit anything to search for