Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That evaporate is a sedimentary rock formed by evaporation and precipitation of saline waters [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for numerical simulations (Keyword) returned 17 results for the whole karstbase:
Showing 1 to 15 of 17
Numerical versus statistical modelling of natural response of a karst hydrogeological system, 1997, Eisenlohr L, Bouzelboudjen M, Kiraly L, Rossier Y,
Structural and hydrodynamic characteristics of karst aquifers are mostly deduced from studies of global responses of karst springs (hydrographs, chemical or isotopic composition). In this case, global response is often used to make inferences with respect to infiltration and ground water How processes as well as on the hydrodynamic parameters. Obviously, the direct verification of these inferences is very difficult. We have used an indirect method of verification, introducing well defined theoretical karst structures into a finite element model and then analysing the simulated global response according to the currently accepted interpretation schemes. As we know what we are introducing into the numeric model, the consistency of the interpretation may be checked immediately. The results obtained in the hydrogeological study of two karst basins in the Swiss Jura and from 2-D and 3-D numerical simulations show the difficulty of finding structural parameters and hydrodynamic behaviour from statistical methods alone, i.e. correlation analyses discharge-discharge and precipitation-discharge. In effect, our first results show that the form of the correlograms depends on several factors besides the structure of the karst aquifer: (i) on the form of the floods. in other words the contrast between quick Row and base How, (ii) on the frequency of hydrological events during the period analysed and (iii) on the type of infiltration processes, in other words the ratio of diffuse infiltration to concentrated information. Obviously, the variability of a karst hydrograph is a result of a combination of these factors. Distinction between them is not always possible on hydrographs, and therefore on correlations (discharge-discharge and precipitation-discharge). (C) 1997 Elsevier Science B.V

Influence of aperture variability on dissolutional growth of fissures in karst formations, 1998, Hanna R. B. , Rajaram H. ,
The influence of aperture variability on dissolutional growth of fissures is investigated on the basis of two-dimensional numerical simulations. The logarithm of the fissure aperture before dissolution begins is modeled as a Gaussian stationary isotropic random field. The initial phase of dissolutional growth is studied up to the time when turbulent flow first occurs at a point within the fissure (the breakthrough time). The breakthrough time in variable aperture fissures is smaller than that in uniform fissures and decreases as the coefficient of variation of the aperture field (sigma/mu) increases. In comparing uniform and variable aperture fissures in limestone, the breakthrough time with sigma/mu = 0.1 is about a factor of 2 smaller than that in a uniform fissure. The breakthrough time is reduced by about an order of magnitude with sigma/mu = 2.0. The mechanism leading to reduced breakthrough times is the focusing of flow into preferential flow channels which are enlarged at a faster rate than the surrounding regions of slower flow. Dissolution channels are narrower and more tortuous as sigma/mu. increases. Investigations of the influence of reaction rate reveal that the influence of aperture variability is more pronounced in rapidly dissolving rock. In uniform fissures in rapidly dissolving minerals, breakthrough times are very long since water becomes saturated with respect to the mineral within a short distance of the entrance to the flow path. However, in variable aperture fissures, breakthrough occurs rapidly because of selective growth along preferential flow channels, which progressively capture larger fractions of the total flow. These results partly explain why conduits develop rapidly in gypsum, although previous one-dimensional studies suggest that conduit growth will not occur

Flow pattern variability in natural fracture intersections, 1999, Kosakowski G. , Berkowitz B. ,
We use numerical simulations to examine the variability of flow patterns in representative fracture intersection geometries. In contrast to existing studies of perfectly orthogonal intersections, we demonstrate that more realistic geometries lead to a rich spectrum of flow patterns. Moreover, numerical solutions of the Navier-Stokes equations in these fracture intersections indicate that non-linear inertial effects become important for Reynolds numbers as tow as 1-100. Such Reynolds numbers often exist in naturally fractured formations, particularly in karst systems and in the vicinity of wells during pump tests

Characterisation of karst systems by simulating aquifer genesis and spring responses: model development and application to gypsum karst., 2002, Birk S.
Karst aquifers are important groundwater resources, which are highly vulnerable to contamination due to fast transport in solutionally enlarged conduits. Management and protection of karst water resources require an adequate aquifer characterisation at the catchment scale. Due to the heterogeneity and complexity of karst systems, this is not easily achieved by standard investigation techniques such as pumping tests. Therefore, a process-based numerical modelling tool is developed, designed to support the karst aquifer characterisation using two complementary approaches: Firstly, the simulation of conduit enlargement, which aims at predicting aquifer properties by forward modelling of long-term karst genesis; secondly, the simulation of heat and solute transport processes, which aims at inferring aquifer properties from short-term karst spring response after recharge events. Karst genesis modelling is applied to a conceptual setting based on field observations from the Western Ukraine, where the major part of known gypsum caves is found. Gypsum layers are typically supplied by artesian flow of aggressive water from insoluble aquifers underneath. Processes and parameters, controlling solutional enlargement of single conduits under artesian conditions, are identified in detailed sensitivity analyses. The development of conduit networks is examined in parameter studies, suggesting that the evolution of maze caves is predetermined by structural preferences such as laterally extended fissure networks beneath a horizon less prone to karstification. Without any structural preferences vertical shafts rather than maze caves are predicted to develop. The structure of the mature conduit system is found to be determined during early karstification, which is characterised by high hydraulic gradients and low flow rates in the gypsum layer. Short-term karst spring response after recharge events is firstly examined in parameter studies by forward modelling. The numerical simulations reveal that different controlling processes of heat and solute transport account for the different behaviour of water temperature and solute concentration frequently observed at karst springs. It is demonstrated that these differences may be employed to reduce the ambiguity in the aquifer characterisation. In order to test the feasibility of the corresponding inverse approach, which aims at inferring aquifer properties from the karst spring response, the model is applied to a field site in Southern Germany (Urenbrunnen spring, Vohringen). Data input is provided by both literature and own field work. Several models, which reproduce the results of a combined tracer and recharge test, are calibrated to spring discharges and solute concentrations measured after a recharge event. In order to validate the calibrated models, the measured spring water temperatures are simulated by heat transport modelling. The model application yields information on aquifer properties as well as flow and transport processes at the field site. Advection is identified as the dominant transport process, whereas the dissolution reaction of gypsum is found to be insignificant in this case. The application to gypsum aquifers demonstrates that both suggested approaches are suitable for the characterisation of karst systems. Model results, however, are highly sensitive to several input parameters, in particular in karst genesis modelling. Therefore, extensive field work is required to provide reliable data for site-specific model applications. In order to account for uncertainties, it is recommended to conduct parameter studies covering possible ranges of the most influential parameters.

Characterisation of karst systems by simulating aquifer genesis and spring responses: model development and application to gypsum karst, PhD thesis, 2002, Birk, S.

Karst aquifers are important groundwater resources, which are highly vulnerable to contamination due to fast transport in solutionally enlarged conduits. Management and protection of karst water resources require an adequate aquifer characterisation at the catchment scale. Due to the heterogeneity and complexity of karst systems, this is not easily achieved by standard investigation techniques such as pumping tests. Therefore, a process-based numerical modelling tool is developed, designed to support the karst aquifer characterisation using two complementary approaches: Firstly, the simulation of conduit enlargement, which aims at predicting aquifer properties by forward modelling of long-term karst genesis; secondly, the simulation of heat and solute transport processes, which aims at inferring aquifer properties from short-term karst spring response after recharge events.
Karst genesis modelling is applied to a conceptual setting based on field observations from the Western Ukraine, where the major part of known gypsum caves is found. Gypsum layers are typically supplied by artesian flow of aggressive water from insoluble aquifers underneath. Processes and parameters, controlling solutional enlargement of single conduits under artesian conditions, are identified in detailed sensitivity analyses. The development of conduit networks is examined in parameter studies, suggesting that the evolution of maze caves is predetermined by structural preferences such as laterally extended fissure networks beneath a horizon less prone to karstification. Without any structural preferences vertical shafts rather than maze caves are predicted to develop. The structure of the mature conduit system is found to be determined during early karstification, which is characterised by high hydraulic gradients and low flow rates in the gypsum layer.
Short-term karst spring response after recharge events is firstly examined in parameter studies by forward modelling. The numerical simulations reveal that different controlling processes of heat and solute transport account for the different behaviour of water temperature and solute concentration frequently observed at karst springs. It is demonstrated that these differences may be employed to reduce the ambiguity in the aquifer characterisation.
In order to test the feasibility of the corresponding inverse approach, which aims at inferring aquifer properties from the karst spring response, the model is applied to a field site in Southern Germany (Urenbrunnen spring, Vohringen). Data input is provided by both literature and own field work. Several models, which reproduce the results of a combined tracer and recharge test, are calibrated to spring discharges and solute concentrations measured after a recharge event. In order to validate the calibrated models, the measured spring water temperatures are simulated by heat transport modelling. The model application yields information on aquifer properties as well as flow and transport processes at the field site. Advection is identified as the dominant transport process, whereas the dissolution reaction of gypsum is found to be insignificant in this case.
The application to gypsum aquifers demonstrates that both suggested approaches are suitable for the characterisation of karst systems. Model results, however, are highly sensitive to several input parameters, in particular in karst genesis modelling. Therefore, extensive field work is required to provide reliable data for site-specific model applications. In order to account for uncertainties, it is recommended to conduct parameter studies covering possible ranges of the most influential parameters.


Evaluation of aquifer thickness by analysing recession hydrographs. Application to the Oman ophiolite hard-rock aquifer, 2003, Dewandel B, Lachassagne P, Bakalowicz M, Weng P, Almalki A,
For more than a century, hydrologists and hydrogeologists have been investigating the processes of stream and spring baseflow recession, for obtaining data on aquifer characteristics. The Maillet Formula [Librairie Sci., A. Hermann, Paris (1905) 218], an exponential equation widely used for recession curve analysis, is an approximate analytical solution for the diffusion equation in porous media whereas the equation proposed by Boussinesq [C. R. Acad. Sci. 137 (1903) 5; J. Math. Pure Appl. 10 (1904) 5], that depicts baseflow recession as a quadratic form, is an exact analytical solution. Other formulas currently used involve mathematical functions with no basis on groundwater theory. Only the exact analytical solutions can provide quantitative data on aquifer characteristics. The efficiency of the two methods was compared on the basis of recession curves obtained with a 2D cross-sectional finite differences model that simulates natural aquifers. Simulations of shallow aquifers with an impermeable floor at the level of the outlet show that their recession curves have a quadratic form. Thus, the approximate Maillet solution largely overestimates the duration of the 'influenced' stage and underestimates the dynamic volume of the aquifer. Moreover, only the Boussinesq equations enable correct estimates of the aquifer parameters. Numerical simulations of more realistic aquifers, with an impermeable floor much deeper than the outlet, proves the robustness of the Boussinesq formula even under conditions far from the simplifying assumptions that were used to integrate the diffusion equation. The quadratic form of recession is valid regardless of the thickness of the aquifer under the outlet, and provides good estimates of the aquifer's hydrodynamic parameters. Nevertheless, the same numerical simulations show that aquifers with a very deep floor provide an exponential recession. Thus, in that configuration, the Maillet formula also provides a good fit of recession curves, even if parameter estimation remains poor. In fact, the recession curve appears to be closer to exponential when flow has a very important vertical component, and closer to quadratic when horizontal flow is dominant. As a consequence, aquifer permeability anisotropy also changes the recession form. The combined use of the two fitting methods allows one to quantify the thickness of the aquifer under the outlet. (C) 2003 Elsevier Science B.V. All rights reserved

A model comparison of karst aquifer evolution for different matrix-flow formulations, 2003, Kaufmann G. ,
The evolution of permeability and flow in a karst aquifer is studied by numerical simulations. The aquifer considered consists of a large central fracture, a network of finer fissures, and a porous rock matrix. Enlargement of both the central fracture and the fissures by chemical dissolution is possible, hence the conductivities in the fracture and the fissure system can increase with time. No dissolution is allowed in the porous rock matrix, which has a constant conductivity. How is driven by a simple fixed head boundary condition representative for the initial phase of karstification. A systematic parameter study is carried out by varying the initial width of the fissure network and the conductivity of the rock matrix, while keeping the initial width of the central fracture fixed. Key parameters such as flowrates, breakthrough times, and conductivities for the different models are compared. If either the conductivity of the rock matrix is high enough or the initial width of the fissures is large enough to carry flow, breakthrough times of the aquifer are significantly reduced, when compared to a model with low matrix conductivity and small fissures. However, due to the dissolutional widening of fissures the evolution of the aquifer is distinctively different for models with rock matrix simulated by a porous medium or a fissure network. (C) 2003 Elsevier B.V. All rights reserved

From the geological to the numerical model in the analysis of gravity-induced slope deformations: An example from the Central Apennines (Italy), 2005, Maffei A. , Martino S. , Prestininzi A. ,
This paper presents the findings from a study on gravity-induced slope deformations along the northern slope of Mt. Nuria (Rieti-Italy). The slope extends from the village of Pendenza to the San Vittorino plain and hosts the Peschiera River springs, i.e. the most important springs of the Central Apennines (average discharge: about 18 m(3)/s). Detailed geological-geomorphological and geomechanical surveys, supported by a site stress-strain monitoring system and laboratory tests, led us to define the main evolutionary features of the studied phenomena. Based on the collected data, a 'geological-evolutionary model' was developed with a view to identifying a spatio-temporal correlation between relief forms, jointing of the rock mass and its stress conditions. The geological-evolutionary model was expected to improve numerical simulations and to test our assumptions. The numerical model also allowed us to simulate changes in the stress-strain conditions of the rock mass and correlate them with jointing, seepage, as well as with site-detected and site-monitored forms and deformations. In particular, significant relations between seepage, tensile stresses within the rock mass, karst solution and collapse of cavities were identified. (c) 2005 Elsevier B.V. All rights reserved

Reactive transport modeling and hydrothermal karst genesis: The example of the Rocabruna barite deposit (Eastern Pyrenees), 2006, Corbella M, Ayora C, Cardellach E, Soler A,
In western Europe and North Africa, many sulfide and barite deposits appear to be related to the pre-Triassic paleosurface. Some of these mineralizations have traditionally been interpreted as the result of mineral fillings of previously formed karstic cavities. However, reactive transport modeling suggests that those minerals may have originated at depth and simultaneous with the cavity in the carbonate rocks. Numerical simulations using the Rocabruna deposit as an example recreate the genesis of such cavities and their filling by new minerals in a hydrothermal environment. Two warm (T = 150 [deg]C) fluids with different compositions but both saturated with dolomite were allowed to mix at a fracture intersection; the resulting solution strongly corroded the dolomite host rock and was able to create large voids in a hundred thousand year time scale. Our results show that equidimensional cavities originate from mixtures with equal fluxes of the contributing fluids, but elongated dissolution zones appear when the flux ratios were different from unity and the slowest flow direction coincided with the longest dimension of the void. Moreover, when the fluid mixture was dominated by a diluted and slightly alkaline groundwater instead of a 50-50 mixture with an acidic brine, dolomite dissolution or corrosion was more effective. Sulfide minerals precipitate around cavity walls replacing the host dolostone as the dolomite dissolution reaction couples with that of sulfide precipitation. This coupling produces some porosity, which is negligible compared to that caused by the mixing itself. Barite may also precipitate inside the forming cavity, but as the sulfate mineral precipitation reaction is not coupled with that of dolomite dissolution, barite grows in open space

On the importance of geological heterogeneity for flow simulation, 2006, Eaton Tt,
Geological heterogeneity is recognized as a major control on reservoir production and constraint on many aspects of quantitative hydrogeology. Hydrogeologists and reservoir geologists need to characterize groundwater flow through many different types of geological media for different purposes. In this introductory paper, an updated perspective is provided on the current status of the long effort to understand the effect of geological heterogeneity on flow using numerical simulations. A summary is given of continuum vs. discrete paradigms, and zonal vs. geostatistical approaches, all of which are used to structure model domains. Using these methods and modern simulation tools, flow modelers now have greater opportunities to account for the increasingly detailed understanding of heterogeneous aquifer and reservoir systems.One way of doing this would be to apply a broader interpretation of the idea of hydrofacies, long used by hydrogeologists. Simulating flow through heterogeneous geologic media requires that numerical models capture important aspects of the structure of the flow domain. Hydrofacies are reinterpreted here as scale-dependent hydrogeologic units with a particular representative elementary volume (REV) or structure of a specific size and shape. As such, they can be delineated in indurated sedimentary or even fractured aquifer systems, independently of lithofacies, as well as in the unlithified settings in which they have traditionally been used. This reconsideration of what constitutes hydrofacies, the building blocks for representing geological heterogeneity in flow models, may be of some use in the types of settings described in this special issue

Validation of vulnerability mapping methods by field investigations and numerical modelling, 2008, Neukum Christoph, Hotzl Heinz, Himmelsbach Thomas

Vulnerability maps illustrate the potential threat of contaminants to groundwater and can be considered as important tools for land-use planning and related legislation. For karst areas with characteristic preferential infiltration conditions, vulnerability maps are also excellent tools for source and resource protection. However, the resulting qualitative maps are often inconsistent and even contradictive and thus might lead to inconclusive vulnerability assessments. The results of a validation of vulnerability maps produced using four different methods, DRASTIC, GLA, PI and EPIK, are reported for a karst area in southwest Germany. By means of measured hydraulic and transport parameters of the geological sequence, numerical simulations were used based on a conceptual model for the area under study. The mean transit time through the unsaturated zone (resource protection) was used as the validation parameter. The study demonstrates that the highest level of accuracy is achieved with the GLA- and PI methods. Both DRASTIC and EPIK are not able to incorporate highly variable distributions and thickness of cover sediments and their protective properties in the respective mapping procedure. Thus, vulnerability maps produced with DRASTIC, EPIK, and related methods should be used with care when employed in vulnerability assessments for land use planning and related decision-making.
Les cartes de vulnerabilite illustrent la menace potentielle des contaminants envers les eaux souterraines, et peuvent etre considerees comme des outils importants en matiere d'amenagement foncier et de reglementation associee. Sur les domaines karstiques, caracterises par des conditions d'infiltration preferentielle, ces cartes sont egalement d'excellents outils de protection des sources et des ressources. Cependant, les cartes qualitatives resultantes sont generalement incoherentes voire contradictoires, et peuvent par la-meme mener a des evaluations de vulnerabilite peu concluantes. La presente etude expose les resultats de validation de cartes de vulnerabilite produites selon quatre methodes differentes (DRASTIC, GLA, PI et EPIK), dans le cas d'un domaine karstique du sud-est de l'Allemagne. Par le biais des parametres de transport et hydrauliques mesures sur la sequence geologique, des simulations numeriques basees sur un modele conceptuel du secteur d'etude ont ete utilisees. Les temps de transit moyens a travers la zone non saturee (protection de la ressource) ont ete utilises comme parametres de validation. L'etude demontre que le niveau maximum de precision est obtenu par les methodes GLA et PI. Dans la phase de cartographie, les methodes EPIK et DRASTIC sont incapables d'integrer une forte variabilite dans les distributions et les epaisseurs de sediments de couverture, ainsi que dans leurs potentiels de protection. Aussi, les cartes de vulnerabilite produites par les methodes DRASTIC et EPIK doivent etre utilisees avec precaution dans le cadre des evaluations de vulnerabilite a but decisionnaire pour les amenagements fonciers.
Los mapas de vulnerabilidad ilustran la amenaza potencial de contaminantes para el agua subterranea y pueden ser considerados herramientas importantes para planeamiento del uso de la tierra y legislacion relacionada. Para areas carsticas con sus caracteristicas condiciones de infiltracion preferencial, los mapas de vulnerabilidad son tambien excelentes herramientas para proteccion de fuentes y recursos. Sin embargo, los mapas cualitativos resultantes son frecuentemente inconsistentes y hasta contradictorios y por lo tanto podrian conducir a evaluaciones de vulnerabilidad no concluyentes. Los resultados de una validacion de mapas de vulnerabilidad producidos usando cuatro metodos diferentes, DRASTIC, GLA, PI y EPIK, son presentados aqui para un area carstica en Alemania suroccidental. Se usaron simulaciones numericas usando parametros hidraulicos y de transporte medidos de la secuencia geologica y basandose en un modelo conceptual del area en estudio. El tiempo promedio de transito a traves de la zona no saturada (proteccion del recurso) fue utilizado como el parametro de validacion. El estudio demuestra que el maximo nivel de precision es alcanzado con los metodos GLA y PI. DRASTIC y EPIK no fueron capaces de incorporar distribuciones altamente variables ni espesor de sedimentos de cubierta y sus propiedades protectivas en el respectivo procedimiento de elaboracion de mapas. Por lo tanto los mapas de vulnerabilidad producidos con DRASTIC, EPIK y metodos relacionados deberian ser usados con cuidado cuando se usen en evaluaciones de vulnerabilidad para planeamiento del uso de tierra


Wormhole formation in dissolving fractures, 2009, Szymczak P. , Ladd A. J. C.

We investigate the dissolution of artificial fractures with three-dimensional, pore-scale numerical simulations. The fluid velocity in the fracture space was determined from a lattice-Boltzmann method, and a stochastic solver was used for the transport of dissolved species. Numerical simulations were used to study conditions under which long conduits (wormholes) form in an initially rough but spatially homogeneous fracture. The effects of flow rate, mineral dissolution rate and geometrical properties of the fracture were investigated, and the optimal conditions for wormhole formation determined.


Modelling karst geomorphology on different time scales, 2009, Kaufmann G.

The evolution and flow in a karst aquifer is studied with numerical simulations, based on the KARST model (Karst AquifeR Simulation Tool). The aquifer consists of a three-dimensional interconnected network of conduits representing fractures in the rock, and a porous rock matrix representing the finer fissured system in the rock. Flow through the aquifer can be driven by both diffuse recharge from precipitation and localised sinking streams, and the aquifer drains towards a large karst resurgence representing the base level. Superimposed onto the karst aquifer is a landscape, which can evolve with time by small-scale diffusive processes, large-scale river erosion, and karst denudation. Fractures in the aquifer are enlarged with time by chemical dissolution, enhancing the secondary porosity of the karst aquifer. The enlargement of fractures results in a dramatic increase of the aquifer conductivity over several orders of magnitude, and a change of flow patterns from an initially pore-controlled to a heterogeneous fracture-controlled aquifer. During the evolution, the water table is falling from an initially high position close to the land surface to a lower level coinciding with the actual base level. Two model scenarios are studied to elucidate the karst aquifer evolution in three dimensions. The evolution models are then complemented by event-type spring discharge modelling, which can be used as a predictive tool for karst spring discharge and contaminant transport.


A preliminary analysis of failure mechanisms in karst and man-made underground caves in Southern Italy, 2011, Parise M. , Lollino P.

Natural and anthropogenic caves may represent a potential hazard for the built environment, due to the occurrence of instability within caves, that may propagate upward and eventually reach the ground surface, inducing the occurrence of sinkholes. In particular, when caves are at shallow depth, the effects at the ground surface may be extremely severe. Apulia region (southern Italy) hosts many sites where hazard associated with sinkholes is very serious due to presence of both natural karst caves and anthropogenic cavities, the latter being mostly represented by underground quarries. The Pliocene–Pleistocene calcarenite (a typical soft rock) was extensively quarried underground, by digging long and complex networks of tunnels. With time, these underground activities have progressively been abandoned and their memory lost, so that many Apulian towns are nowadays located just above the caves, due to urban expansion in the last decades. Therefore, a remarkable risk exists for society, which should not be left uninvestigated.

The present contribution deals with the analysis of the most representative failure mechanisms observed in the field for such underground instability processes and the factors that seem to influence the processes, as for example those causing weathering of the rock and the consequent degradation of its physical and mechanical properties. Aimed at exploring the progression of instability of the cavities, numerical analyses have been developed by using both the finite element method for geological settings represented by continuous soft rock mass, and the distinct element method for jointed rock mass conditions. Both the effects of local instability processes occurring underground and the effects of the progressive enlargement of the caves on the overall stability of the rock mass have been investigated, along with the consequent failure mechanisms. In particular, degradation processes of the rock mass, as a consequence of wetting and weathering phenomena in the areas surrounding the caves, have been simulated. The results obtained from the numerical simulations have then been compared with what has been observed during field surveys and a satisfactory agreement between the numerical simulations and the instability processes, as detected in situ, has been noticed.


Thermal damping and retardation in karst conduits, 2015, Luhmann A. J. , Covington M. D. , Myre J. M. , Perne M. , Jones S. W. , Alexander Jr. E. C. , Saar M. O

Water temperature is a non-conservative tracer in the environment. Variations in recharge temperature are damped and retarded as water moves through an aquifer due to heat exchange between water and rock. However,within karst aquifers, seasonal and short-term fluctuations in recharge temperature are often transmitted over long distances before they are fully damped. Using analytical solutions and numerical simulations, we develop relationshipsthat describe the effect of flow path properties, flow-through time, recharge characteristics, and water and rock physical properties on the damping and retardation of thermal peaks/troughs in karst conduits. Using these relationships, one can estimate the thermal retardation and damping that would occur under given conditions with a given conduit geometry. Ultimately, these relationships can be used with thermal damping and retardation field data to estimate parameters such as conduit diameter. We also examine sets of numerical simulations where we relax some of the assumptions used to develop these relationships, testing the effects of variable diameter, variable velocity, open channels, and recharge shape on thermal damping and retardation to provide some constraints on uncertainty. Finally, we discuss a multitracer experiment that provides some field confirmation of our relationships. High temporal resolution water temperature data are required to obtain sufficient constraints on the magnitude and timing of thermal peaks and troughs in order to take full advantage of water temperature as a tracer.

 


Results 1 to 15 of 17
You probably didn't submit anything to search for