Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That allochthonous is said of material originating from a different locality than the one in which it has been deposited [16]. see also autochthonous.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for ontogeny (Keyword) returned 5 results for the whole karstbase:
Symposium Abstract: The ontogeny of Speleothems, 2003, Self C. A.

How speleothems grow: An introduction to the ontogeny of cave minerals, 2003, Self, C. A. , Hill, C. A.
Speleothems are secondary mineral deposits whose growth in caves can be studied by mineralogic techniques. One of these techniques is the ontogeny of minerals, which is the study of individual crystals and their aggregates as physical bodies rather than as mineral species. Ontogeny of cave minerals as a scientific subject has been developed in Russia but is poorly understood in the West. This paper introduces the basic principles of this subject and explains a hierarchy scheme whereby mineral bodies can be studied as crystal individuals, aggregates of individuals, associations of aggregates (termed koras), and as sequences of koras (ensembles).

The internal organization of speleothems, 2004, Self, Charles A.

Speleothems are secondary cave mineral deposits whose internal organization can be studied by mineralogical techniques. The ontogeny of minerals is a technique developed in Russia whereby individual crystals and their aggregates are studied as physical bodies rather than as mineral species. This paper gives a concise guide to the terminology of ontogeny, as applied to cave mineral deposits.


Cave mineralogy and the NSS: past, present, future, 2007, Hill Carol A. And Forti Paolo
The purpose of this paper is to trace the National Speleological Societys past, present, and future involvement with the science of cave mineralogy, in accordance with the celebration of the NSSs 65th Anniversary. In the NSSs first decade (1940s), a number of articles covering mineralogy topics were published in grotto newsletters, the NSS News and NSS Bulletin, but it wasnt until the 1950s and 1960s that it published professional scientific papers on this subject. The Societys first huge commitment to this field was in their publication of Cave Minerals in 1976, the first book in the world on cave minerals and the first book ever published by the NSS. The book series Cave Minerals of the World, the second edition of which was published in 1997, has become the standard reference on the subject. Important fields of future research in cave mineralogy that the NSS may become involved with are those of paleo-environments, microbiology, and minerals ontogeny.

Speleothem microstructure/speleothem ontogeny: a review of Western contributions, 2012, White William B.

Mineral ontogeny is the study of the growth and development of mineral deposits in general and, in the present context, speleothems in particular. Previous researchers, mainly in Russia, have developed a nomenclatural hierarchy based on the forms and habits of individual crystals and the assembly of individual crystals into both monomineralic and polymineralic aggegates (i.e. speleothems). Although investigations of the growth processes of speleothems are sparse, there is a large literature on growth processes of speleothem minerals and related crystals in the geochemical and materials science literature. The purpose of the present paper is to sort through the various concepts of crystal growth and attempt to relate these to observations on speleothems and to the Russian conceptual framework of mineral ontogeny. For calcite, the most common mineral in speleothems, the activation energy for two dimensional nucleation (required for the growth of large single crystals) is almost the same as the activation energy for three- dimensional nucleation (which would result in the growth of many small crystals). Calcite growth is highly sensitive to minor impurities that may poison growth in certain crystallographic directions or may poison growth altogether. Extensive recent research using the atomic force microscope (AFM) provides many details of calcite growth including the transition from growth on screw dislocations to growth by two-dimensional nucleation. The deposition of aragonite speleothems requires metastable supersaturation curve and is usually ascribed to the impurities Mg2+ and Sr2+. AFM studies reveal that Mg2+ poisons calcite growth by blocking deposition sites on dislocations, thus allowing supersaturation to build up past the aragonite solubility curve. Sr2+ precipitates as a Sr-rich nucleus with the aragonite structure which acts as a template for aragonite growth. The different morphology of gypsum speleothems can be explained by the different growth habit of gypsum. Examples of twinned growth, dendrite growth, and spherulitic growth are common in the crystal growth literature and can be used to interpret the corresponding cave forms. Interpretation of monomineralic aggregate growth follows from individual crystal mechanisms. Interpretation of polymineralic aggregate growth requires knowing the evolving chemistry which in turn requires new methods for the sampling and analysis of microliter or nanoliter quantities of fluid.


Results 1 to 5 of 5
You probably didn't submit anything to search for