Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That flow-mass curve is 1. a mass curve with runoff discharge as a hydrologic quantity [16]. 2. the integral of the curve of a hydrograph [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for parameter studies (Keyword) returned 4 results for the whole karstbase:
Characterisation of karst systems by simulating aquifer genesis and spring responses: model development and application to gypsum karst., 2002, Birk S.
Karst aquifers are important groundwater resources, which are highly vulnerable to contamination due to fast transport in solutionally enlarged conduits. Management and protection of karst water resources require an adequate aquifer characterisation at the catchment scale. Due to the heterogeneity and complexity of karst systems, this is not easily achieved by standard investigation techniques such as pumping tests. Therefore, a process-based numerical modelling tool is developed, designed to support the karst aquifer characterisation using two complementary approaches: Firstly, the simulation of conduit enlargement, which aims at predicting aquifer properties by forward modelling of long-term karst genesis; secondly, the simulation of heat and solute transport processes, which aims at inferring aquifer properties from short-term karst spring response after recharge events. Karst genesis modelling is applied to a conceptual setting based on field observations from the Western Ukraine, where the major part of known gypsum caves is found. Gypsum layers are typically supplied by artesian flow of aggressive water from insoluble aquifers underneath. Processes and parameters, controlling solutional enlargement of single conduits under artesian conditions, are identified in detailed sensitivity analyses. The development of conduit networks is examined in parameter studies, suggesting that the evolution of maze caves is predetermined by structural preferences such as laterally extended fissure networks beneath a horizon less prone to karstification. Without any structural preferences vertical shafts rather than maze caves are predicted to develop. The structure of the mature conduit system is found to be determined during early karstification, which is characterised by high hydraulic gradients and low flow rates in the gypsum layer. Short-term karst spring response after recharge events is firstly examined in parameter studies by forward modelling. The numerical simulations reveal that different controlling processes of heat and solute transport account for the different behaviour of water temperature and solute concentration frequently observed at karst springs. It is demonstrated that these differences may be employed to reduce the ambiguity in the aquifer characterisation. In order to test the feasibility of the corresponding inverse approach, which aims at inferring aquifer properties from the karst spring response, the model is applied to a field site in Southern Germany (Urenbrunnen spring, Vohringen). Data input is provided by both literature and own field work. Several models, which reproduce the results of a combined tracer and recharge test, are calibrated to spring discharges and solute concentrations measured after a recharge event. In order to validate the calibrated models, the measured spring water temperatures are simulated by heat transport modelling. The model application yields information on aquifer properties as well as flow and transport processes at the field site. Advection is identified as the dominant transport process, whereas the dissolution reaction of gypsum is found to be insignificant in this case. The application to gypsum aquifers demonstrates that both suggested approaches are suitable for the characterisation of karst systems. Model results, however, are highly sensitive to several input parameters, in particular in karst genesis modelling. Therefore, extensive field work is required to provide reliable data for site-specific model applications. In order to account for uncertainties, it is recommended to conduct parameter studies covering possible ranges of the most influential parameters.

Characterisation of karst systems by simulating aquifer genesis and spring responses: model development and application to gypsum karst, PhD thesis, 2002, Birk, S.

Karst aquifers are important groundwater resources, which are highly vulnerable to contamination due to fast transport in solutionally enlarged conduits. Management and protection of karst water resources require an adequate aquifer characterisation at the catchment scale. Due to the heterogeneity and complexity of karst systems, this is not easily achieved by standard investigation techniques such as pumping tests. Therefore, a process-based numerical modelling tool is developed, designed to support the karst aquifer characterisation using two complementary approaches: Firstly, the simulation of conduit enlargement, which aims at predicting aquifer properties by forward modelling of long-term karst genesis; secondly, the simulation of heat and solute transport processes, which aims at inferring aquifer properties from short-term karst spring response after recharge events.
Karst genesis modelling is applied to a conceptual setting based on field observations from the Western Ukraine, where the major part of known gypsum caves is found. Gypsum layers are typically supplied by artesian flow of aggressive water from insoluble aquifers underneath. Processes and parameters, controlling solutional enlargement of single conduits under artesian conditions, are identified in detailed sensitivity analyses. The development of conduit networks is examined in parameter studies, suggesting that the evolution of maze caves is predetermined by structural preferences such as laterally extended fissure networks beneath a horizon less prone to karstification. Without any structural preferences vertical shafts rather than maze caves are predicted to develop. The structure of the mature conduit system is found to be determined during early karstification, which is characterised by high hydraulic gradients and low flow rates in the gypsum layer.
Short-term karst spring response after recharge events is firstly examined in parameter studies by forward modelling. The numerical simulations reveal that different controlling processes of heat and solute transport account for the different behaviour of water temperature and solute concentration frequently observed at karst springs. It is demonstrated that these differences may be employed to reduce the ambiguity in the aquifer characterisation.
In order to test the feasibility of the corresponding inverse approach, which aims at inferring aquifer properties from the karst spring response, the model is applied to a field site in Southern Germany (Urenbrunnen spring, Vohringen). Data input is provided by both literature and own field work. Several models, which reproduce the results of a combined tracer and recharge test, are calibrated to spring discharges and solute concentrations measured after a recharge event. In order to validate the calibrated models, the measured spring water temperatures are simulated by heat transport modelling. The model application yields information on aquifer properties as well as flow and transport processes at the field site. Advection is identified as the dominant transport process, whereas the dissolution reaction of gypsum is found to be insignificant in this case.
The application to gypsum aquifers demonstrates that both suggested approaches are suitable for the characterisation of karst systems. Model results, however, are highly sensitive to several input parameters, in particular in karst genesis modelling. Therefore, extensive field work is required to provide reliable data for site-specific model applications. In order to account for uncertainties, it is recommended to conduct parameter studies covering possible ranges of the most influential parameters.


Modeling of karst aquifer genesis: Influence of exchange flow, 2003, Bauer S, Liedl R, Sauter M,
[1] This paper presents a numerical model study simulating the early karstification of a single conduit embedded in a fissured system. A hybrid continuum-discrete pipe flow model (CAVE) is used for the modeling. The effects of coupling of the two flow systems on type and duration of early karstification are studied for different boundary conditions. Assuming fixed head boundaries at both ends of the conduit, coupling of the two flow systems via exchange flow between the conduit and the fissured system leads to an enhanced evolution of the conduit. This effect is valid over a wide range of initial conduit diameters, and karstification is accelerated by a factor of about 100 as compared to the case of no exchange flow. Parameter studies reveal the influence of the exchange coefficient and of the hydraulic conductivity of the fissured system on the development time for the conduit. In a second scenario the upstream fixed head boundary is switched to a fixed flow boundary at a specified flow rate during the evolution, limiting the amount of water draining toward the evolving conduit. Depending on the flow rate specified, conduit evolution may be slowed down or greatly impaired if exchange flow is considered

The significance of turbulent flow representation in single-continuum models, 2011, Reimann T. , Rehrl C. , Shoemaker W. B. , Geyer T. , Birk S.

Karst aquifers evolve where the dissolution of soluble rocks causes the enlargement of discrete pathways along fractures or bedding planes, thus creating highly conductive solution conduits. To identify general interrelations between hydrogeological conditions and the properties of the evolving conduit systems the aperture-size frequency distributions resulting from generic models of conduit evolution are analysed. For this purpose, a process-based numerical model coupling flow and rock dissolution is employed. Initial protoconduits are represented by tubes with log-normally distributed aperture sizes with a mean ?0 = 0.5 mm for the logarithm of the diameters. Apertures are spatially uncorrelated and widen up to the metre range due to dissolution by chemically aggressive waters. Several examples of conduit development are examined focussing on influences of the initial heterogeneity and the available amount of recharge. If the available recharge is sufficiently high the evolving conduits compete for flow and those with large apertures and high hydraulic gradients attract more and more water. As a consequence, the positive feedback between increasing flow and dissolution causes the breakthrough of a conduit pathway connecting the recharge and discharge sides of the modelling domain. Under these competitive flow conditions dynamically stable bimodal aperture distributions are found to evolve, i.e. a certain percentage of tubes continues to be enlarged while the remaining tubes stay small-sized. The percentage of strongly widened tubes is found to be independent of the breakthrough time and decreases with increasing heterogeneity of the initial apertures and decreasing amount of available water. If the competition for flow is suppressed because the availability of water is strongly limited breakthrough of a conduit pathway is inhibited and the conduit pathways widen very slowly. The resulting aperture distributions are found to be unimodal covering some orders of magnitudes in size. Under these suppressed flow conditions the entire range of apertures continues to be enlarged. Hence, the number of tubes reaching aperture sizes in the order of centimetres or decimetres continues to increase with time and in the long term may exceed the number of large-sized tubes evolving under competitive flow conditions. This suggests that conduit development under suppressed flow conditions may significantly enhance the permeability of the formation, e.g. in deep-seated carbonate settings.


Results 1 to 4 of 4
You probably didn't submit anything to search for