Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That bearing is the angle measured clockwise that a line makes with the north line. true, magnetic and grid bearings are measured respectively from true, magnetic and grid north [25].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for paratethys (Keyword) returned 4 results for the whole karstbase:
Paratethyan-Mediterranean connectivity in the Sea of Marmara region (NW Turkey) during the Messinian, 2006, Cagatay Mn, Gorur N, Flecker R, Sakinc M, Tunoglu C, Ellam R, Krijgsman W, Vincent S, Dikbas A,
The Sea of Marmara region is thought to have been a gateway between Paratethys and the Mediterranean since the Middle Miocene, and is therefore an important control on water mass exchange between the two realms. The Miocene successions in the northeastern Aegean and northwestern Marmara regions indicate that the first Mediterranean marine transgression to affect these areas occurred during the late Serravallian.In the northeastern Aegean region, frequent marine incursions occurred during the Tortonian and Messinian stages. The Messinian stage in this area is represented by a package of brackish- to fresh-water carbonates with some marine sandstone-siltstone interbeds (Alcitepe Formation), which conformably overlies the Tortonian Kirazli Formation. The Messinian sequence is overlain with an erosional contact by a shallow marine siliciclastic sequence (Goztepe Formation) of Zanclean age. With its brackish- to fresh-water carbonates and broadly constrained age, the Messinian sequence is interpreted as being coeval with the Upper Evaporite-Lago Mare sequence observed in western Mediterranean basins.In the western Marmara region, the Pontian (Messinian) Alcitepe Formation consists of bioclastic and oolitic limestones with basal clastic rocks. It conformably overlies the fluvio-lacustrine siliciclastic sediments of the Middle to Upper Miocene Kirazli Formation and is overlain by fluvio-lacustrine sediments of the Kimmerian (5.5-3.2[no-break space]Ma) Truva and Tevfikiye formations with an erosional contact.The bioclastic limestones of the Alcitepe Formation in the western Marmara region contain a molluscan and ostracod fauna that are endemic to Paratethys. These fauna indicate deposition in a shallow, brackish- to fresh-water environment. Faunal and paleomagnetic analyses of a section of the Alcitepe Formation at Yenimahalle (Canakkale) confirm that the formation is of Pontian age and represents chron C3r (6.04-5.24[no-break space]Ma). The ostracod analysis indicates that during deposition of the Alcitepe Formation, salinity increased from brackish in the lower part to more saline conditions in the upper part. Ostracod valves have low 87Sr / 86Sr values relative to coeval Late Miocene ocean water. This indicates that exchange between the Sea of Marmara region and the global ocean was restricted throughout this period. Fossil and Sr-isotope evidence suggests, however, that there was a Paratethyan-Marmara connection during the deposition of the lower part of the Alcitepe Formation, with Paratethyan influence reaching the north Aegean. Connection via Marmara between Paratethys and the Mediterranean was not re-established until the late Aktchagylian (Late Pliocene). The re-connection was caused by both increased activity on the North Anatolian Fault and global sea level rise

Identifying Late Miocene episodes of connection and isolation in the Mediterranean-Paratethyan realm using Sr isotopes, 2006, Flecker R, Ellam Rm,
After decades of research, the timing and nature of Late Miocene connections between the Mediterranean, Paratethys and the global ocean are still speculative. The hydrologic flux implications of exchange or isolation are central to all hypotheses for generating the major lithological changes that represent the Messinian Salinity Crisis. Moreover, differences in the hydrologic fluxes envisaged are the primary distinction between models. Despite this, these fluxes remain largely unconstrained. This paper describes the basis for using Sr isotope data innovatively combined with salinity data through hydrologic budget modelling to determine the timing and nature of Mediterranean hydrologic connectivity. We examine the hypotheses for three Late Miocene events to illustrate how this approach allows us to test implied hydrologic scenarios and exclude incompatible models. 1) Pre-evaporite restriction of the Mediterranean; 2) the initiation of salt precipitation; 3) connection between the Sea of Marmara and both Paratethys and the Mediterranean during the Messinian. This process suggests that the Atlantic-Mediterranean exchange was significantly reduced up to three million years before evaporite precipitation. It also indicates that end-member hypotheses for initiating salt precipitation in the Mediterranean (desiccation and connected basin models) are inconsistent with Sr isotope data. A contrasting model where evaporite formation was triggered by Atlantic transgression into a strongly evaporation-dominated Mediterranean is shown to be more compatible with available datasets. The application to Sea of Marmara samples indicates that salinity changes in the basin were not caused by changes to the amount of inflow from either Paratethys or the Mediterranean. Other possible as yet untested applications important for constraining different aspects of the Messinian Salinity Crisis are highlighted

Changing perspectives in the concept of 'Lago-Mare' in Mediterranean Late Miocene evolution, 2006, Orszagsperber Fabienne,
The Cenozoic Alpine orogeny caused the partition of Tethys into several basins. During the Late Neogene, the Mediterranean attained its final configuration, whereas, eastwards, the Paratethys, isolated from the World Ocean, disintegrated progressively into a series of smaller basins. As a result, an endemic fauna developed in these basins, mainly composed of brackish to freshwater faunas, indicating an environment affected by changes in water salinity. These small basins of the Paratethys were named 'Sea-Lakes' by Andrusov [Andrusov, D., 1890. Les Dreissenidae fossiles et actuelles d'Eurasie. Geol. min. 25, 1-683 (in Russian)]. Subsequently this name was translated into 'Lac-Mer' [Gignoux, M., 1936. Geologie stratigraphique, 2[deg]edition, Masson, Paris].In the Mediterranean isolated from the Atlantic at the end of the Miocene (Messinian), thick evaporites deposited, consisting of a marine Lower Evaporite unit and an Upper Evaporite unit, mainly of continental origin. Ruggieri [Ruggieri, G., 1962. La serie marine pliocenica e quaternaria della Val Marecchia. Atti Acad. Sci. Lett. Arti. Palermo, 19, 1-169.] used the term 'Lago-Mare', to characterize the brackish to fresh water environment which occurred within the Mediterranean at the end of the Messinian.During recent decades, numerous scientific investigations concerning the history of the Messinian within the Mediterranean were devoted to the understanding of conditions prevailing after the deposition of the marine evaporites. Brackish to freshwater faunas are found in several outcrops and boreholes in the Mediterranean, both in the uppermost beds of gypsum and inter-bedded within the clastic sediments of the Upper Evaporite Unit, immediately preceeding the flooding by the marine Pliocene waters. These faunas, because of their similarities with the fauna described in the Paratethys, were named 'Paratethyan', or 'Caspi-brackish' fauna, this leading some authors to imply a migration of these fauna from Paratethys to the Mediterranean. However, others refute this hypothesis.New data induced some researchers to consider that exchanges existed between the Mediterranean and the Eastern Paratethys and also between the Mediterranean and the Atlantic Ocean at the Miocene-Pliocene transition. These investigations now take advantage of the accurate time scales established by authors (biostratigraphy, cyclostratigraphy, magnetostratigraphy), allowing good stratigraphic correlations between the Mediterranean and the Paratethys, and precisions on the geodynamic evolution of this area.Furthermore, sediments at the base of the Zanclean (MPl1), locally containing brackish to fresh water faunas conducted authors to attribute this formation to an infra- or pre-Pliocene and also to a Lago-Mare 'event'.Thus, the 'Lago-Mare' concept drifted from its original meaning, and is evolving because of progresses in the understanding of the Mediterranean geodynamics and the adjacent areas during the Miocene-Pliocene transition

The beginning, development and termination of the Middle Miocene Badenian salinity crisis in Central Paratethys, 2006, Peryt Tadeusz Marek,
Middle Miocene Badenian evaporites of the Carpathian region are underlain and overlain by deep-water deposits, the onset of evaporite deposition was sudden but not synchronous in all facies zones and the deposition of evaporites was controlled by the evolution of Carpathian orogen. In the Carpathian Foredeep (and most probably in other basins) the Badenian evaporites represent the lower part of the NN6 zone. Halite and associated deposits in the central part of the Badenian evaporite basin show the same facies successions and marker beds can be traced across and between individual basins. Characteristic marker beds made it possible to correlate various facies zones of the marginal Ca-sulfate platform. These marker beds seem to reflect events that may be related to sudden and widespread changes in water chemistry, which in turn imply major changes in basin hydrology. The onset of the evaporitic deposition in the Carpathian Foredeep was clearly diachronous and the evaporites deposited in the basin centre preceded the beginning of evaporite sedimentation in the marginal basin, however, depositional history in the marginal basin and the basin centre was the same. A general transgressive sequence of evaporites found in the Carpathian Foredeep resulted from the migration of facies zones induced by the nappe movement.Isotopic studies of Badenian foraminifers occurring below evaporites suggest that the interrupted communication of the Paratethys with the ocean was a consequence of eustatic sea-level fall, possibly related to climatic cooling, and it was coupled with a tectonic closure of connection with the Tethys. Thus both tectonics and eustacy have contributed to the origin of salinity crisis. Sedimentological and geochemical data indicate recycling of evaporites throughout most of the evaporite deposition. The recycling at the end of gypsum deposition in the marginal sulfate platform was accompanied by a change in the hydrology of the Central Paratethys that was tectonically-driven, and possibly related to the block tectonic phase manifested in the marginal part of the Carpathian Foredeep Basin. The change in hydrology implied the dilution of brines by inflowing marine water and this terminated the Middle Miocene Badenian salinity crisis. The onset of the Badenian salinity crisis shows great similarities to the onset of the Messinian salinity crisis and the terminations of both crises were different

Results 1 to 4 of 4
You probably didn't submit anything to search for