Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That sand pipe is see solution pipe.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
Engineering challenges in Karst, Stevanović, Zoran; Milanović, Petar
See all featured articles
Featured articles from other Geoscience Journals
Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy), Dimuccio, L.A.; Rodrigues, N.; Larocca, F.; Pratas, J.; Amado, A.M.; Batista de Carvalho, L.A.
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
See all featured articles from other geoscience journals

Search in KarstBase

Your search for permeability (Keyword) returned 236 results for the whole karstbase:
Showing 1 to 15 of 236
Conduit enlargement in an eogenetic karst aquifer, , Moore Paul J. , Martin Jonathan B. , Screaton Elizabeth J. , Neuhoff Philip S.

Most concepts of conduit development have focused on telogenetic karst aquifers, where low matrix permeability focuses flow and dissolution along joints, fractures, and bedding planes. However, conduits also exist in eogenetic karst aquifers, despite high matrix permeability which accounts for a significant component of flow. This study investigates dissolution within a 6-km long conduit system in the eogenetic Upper Floridan aquifer of north-central Florida that begins with a continuous source of allogenic recharge at the Santa Fe River Sink and discharges from a first-magnitude spring at the Santa Fe River Rise. Three sources of water to the conduit include the allogenic recharge, diffuse recharge through epikarst, and mineralized water upwelling from depth. Results of sampling and inverse modeling using PHREEQC suggest that dissolution within the conduit is episodic, occurring only during 30% of 16 sampling times between March 2003 and April 2007. During low flow conditions, carbonate saturated water flows from the matrix to the conduit, restricting contact between undersaturated allogenic water with the conduit wall. When gradients reverse during high flow conditions, undersaturated allogenic recharge enters the matrix. During these limited periods, estimates of dissolution within the conduit suggest wall retreat averages about 4 × 10−6 m/day, in agreement with upper estimates of maximum wall retreat for telogenetic karst. Because dissolution is episodic, time-averaged dissolution rates in the sink-rise system results in a wall retreat rate of about 7 × 10−7 m/day, which is at the lower end of wall retreat for telogenetic karst. Because of the high permeability matrix, conduits in eogenetic karst thus enlarge not just at the walls of fractures or pre-existing conduits such as those in telogenetic karst, but also may produce a friable halo surrounding the conduits that may be removed by additional mechanical processes. These observations stress the importance of matrix permeability in eogenetic karst and suggest new concepts may be necessary to describe how conduits develop within these porous rocks.


The role of tributary mixing in chemical variations at a karst spring, Milandre, Switzerland, , Perrin J. , Jeannin P. Y. , Cornaton F. ,
SummarySolute concentration variations during flood events were investigated in a karst aquifer of the Swiss Jura. Observations were made at the spring, and at the three main subterraneous tributaries feeding the spring. A simple transient flow and transport numerical model was able to reproduce chemographs and hydrographs observed at the spring, as a result of a mixing of the concentration and discharge of the respective tributaries. Sensitivity analysis carried out with the model showed that it is possible to produce chemical variations at the spring even if all tributaries have constant (but different for each of them) solute concentrations. This process is called tributary mixing. The good match between observed and modelled curves indicate that, in the phreatic zone, tributary mixing is probably an important process that shapes spring chemographs. Chemical reactions and other mixing components (e.g. from low permeability volumes) have a limited influence.Dissolution-related (calcium, bicarbonate, specific conductance) and pollution-related parameters (nitrate, chloride, potassium) displayed slightly different behaviours: during moderate flood events, the former showed limited variations compared to the latter. During large flood events, both presented chemographs with significant changes. No significant event water participates in moderate flood events and tributary mixing will be the major process shaping chemographs. Variations are greater for parameters with higher spatial variability (e.g. pollution-related). Whereas for large flood events, the contribution of event water becomes significant and influences the chemographs of all the parameters. As a result, spring water vulnerability to an accidental pollution is low during moderate flood events and under base flow conditions. It strongly increases during large flood events, because event water contributes to the spring discharge

Theoretical analysis of regional groundwater flow. 2. Effect of water-table configuration and subsurface permeability variations, 1967, Freeze R. A. , Witherspoon P. A

Hydrology of carbonate rock terranes -- A review , : With special reference to the United States, 1969, Stringfield V. T. , Legrand H. E. ,
Limestone and other carbonate rocks are characterized by many unusual features and extreme conditions, either involving the hydrologic system within them or wrought by hydrologic conditions on them or through them. Perhaps there could be little agreement as to what is typical or average for the many features of carbonate rocks, as indicated by the following conditions: bare rock and thin soils are common, but so are thick soils; very highly permeable limestones are common, but so are poorly permeable ones; and rugged karst topographic features with underlying solution caverns are common, but so are flat, nearly featureless topographic conditions. Some conditions of carbonate terranes are suitable to man's needs and interests, such as the use of some permeable aquifers for water supply and the exploitation of caves for tourist attractions. On the other hand, many problems may exist, including: permeability too low for adequate water supply or so high that the aquifer retains too little water for use during periods of fair weather, soils too thin for growing of crops and for adequate filtration of wastes near the ground surface, instability of the ground for buildings and foundations in sinkhole areas, and unusually rugged topography. Some of the many variable conditions are readily observable, but others can be determined only by careful geologic and hydrologic studies.The need for knowing the specific geologic and hydrologic conditions at various places in limestone terranes, as well as the variations in hydrologic conditions with changing conditions and time, has resulted in many published reports on local areas and on special topical problems of limestone hydrology. Many of these reports have been used to advantage by the present writers in preparing this paper.The concept that secondary permeability is developed by circulation of water through openings with the accompanying enlargement of these openings by solution is now universally accepted in limestone terranes. Emphasis is placed on the hydrogeologic framework, or structural setting, in relation to the ease or difficulty of water to move from a source of recharge, through a part of the limestone, to a discharge area. Parts of the limestone favored by circulating ground water tend to develop solution openings, commonly in the upper part of the zone of saturation; as base level is lowered (sea level or perennial stream level), the related water table lowers in the limestone leaving air-filled caverns above the present zone of saturation in sinkhole areas. Reconstruction of the geologic and hydrologic history of a limestone area aids in determining the extent of development and the positions of fossil and present permeability. References are made to the hydrology of many limestone regions, especially those of the United States

Geology and hydrogeology of the El Convento cave-spring system, Southwestern Puerto Rico., 1974, Beck Barry F.
Whereas the North Coast Tertiary Limestones of Puerto Rico are classic karst locales, their southern counterparts are almost devoid of karst development. The El Convento Cave-Spring System is the most prominent feature of the only large scale karst area developed on the South Coast Tertiary limestones. The karst topography is localized on the middle Juana Diaz Formation, which is a reef facies limestone, apparently because of the high density and low permeability of this zone as compared to the surrounding chalks and marls. In the El Convento System a sinking ephemeral stream combines with the flow from two perennial springs inside the cave. The surface drainage has been pirated from the Rio Tallaboa to the east into El Convento's subterranean course. The climate is generally semi-arid with 125-150 cm of rain falling principally as short, intense showers during Sept., Oct., and Nov. Sinking flood waters are absorbed by a small sinkhole and appear two to three hours later in the cave. In the dry season this input is absent. The two springs within the cave have a combined inflow to the system of 1.0 m3/min at low flow but half of this leaks back to the groundwater before it reaches the resurgence. The spring waters are saturated with CaCO3 and high in CO2 (26.4 ppm). As the water flows through the open cave it first becomes supersaturated by losing CO2 and then trends back toward saturation by precipitating CaCO3.

Rpartition quantitative des phnomnes karstiques super-ficiels et souterrains en fonction de la lithologie sur le Causse Comtal (Aveyron, Fr .), 1983, Dodge, D.
QUANTITATIVE DISTRIBUTION OF THE SURFICIAL AND UNDERGROUND KARSTIC PHENOMENA ACCORDING TO LITHOLOGY ON THE CAUSSE COMTAL (AVEYRON, FRANCE) - The quantitative distribution of karst phenomena (dolines, karren, dry valleys, springs, sinkholes and caves) in the Causse Comtal aquifers is analysed. This distribution is dependent on lithology, topography, tectonics, and permeability of the aquifer layers and relative importance of underground drainage networks. The part played by each of these factors in the development of the observed phenomena is discussed. The relationship between superficial and deep karst features is examined.

The role of the subcutaneous zone in karst hydrology, 1983, Williams Paul W. ,
The subcutaneous zone is the upper weathered layer of rock beneath the soil, but above the permanently saturated (phreatic) zone. It is of particular hydrological importance in karst because of its high secondary permeability, arising from the considerable chemical solution in this zone. However, corrosional enlargement of fissures diminishes with depth; thus permeability decreases in the same direction with the result that percolation is inhibited, except down widened master joints and faults. Storage of water consequently occurs in this zone, particularly after storms. The upper surface of this suspended saturated layer in the subcutaneous zone is defined by a perched water table, which slopes towards points of rapid vertical percolation. The potential induces lateral water movement converging on the most permeable areas such as beneath dolines. Leakage from the subcutaneous store sustains slow percolation in the vadose zone. Cross-correlation of rainfall with percolation rates in caves in New Mexico, U.S.A., and New Zealand reveal response lags of 2-14 weeks with no apparent relationship to depth below the surface. Other percolation sites show no correlation with rainfall; interpreted as being a consequence of considerable friction in tight fissure networks. The recognition of storage and rapid as well as very slow percolation from the subcutaneous zone requires re-interpretation of the components of hydrographs from karst springs and of some conceptual models of karst aquifers. The importance of subcutaneous storage in sustaining baseflow discharge at some sites must be recognised, as must the contribution of subcutaneous water to flood hydrographs. Methods of estimating the volumes of subcutaneous and phreatic components of karst-spring flood hydrographs are presented. The paper concludes with a discussion of the significance of subcutaneous hydrologic processes for an understanding of karst geomorphology. The desirability of explaining karst landform evolution in terms of hydrologic processes is stressed

Fracture permeability: implications on cave and sinkhole development and their environmental assessments, 1987, Veni, G

Chemical hydrogeology in natural and contaminated environments, 1989, Back W, Baedecker Mj,
Chemical hydrogeology, including organic and inorganic aspects, has contributed to an increased understanding of groundwater flow systems, geologic processes, and stressed environments. Most of the basic principles of inorganic-chemical hydrogeology were first established by investigations of organic-free, regional-scale systems for which simplifying assumptions could be made. The problems of groundwater contamination are causing a shift of emphasis to microscale systems that are dominated by organic-chemical reactions and that are providing an impetus for the study of naturally occurring and manmade organic material. Along with the decrease in scale, physical and chemical heterogeneity become major controls.Current investigations and those selected from the literature demonstrate that heterogeneity increases in importance as the study site decreases from regional-scale to macroscale to microscale. Increased understanding of regional-scale flow systems is demonstrated by selection of investigations of carbonate and volcanic aquifers to show how application of present-day concepts and techniques can identify controlling chemical reactions and determine their rates; identify groundwater flow paths and determine flow velocity; and determine aquifer characteristics. The role of chemical hydrogeology in understanding geologic processes of macroscale systems is exemplified by selection of investigations in coastal aquifers. Phenomena associated with the mixing zone generated by encroaching sea water include an increase in heterogeneity of permeability, diagenesis of minerals, and formation of geomorphic features, such as caves, lagoons, and bays. Ore deposits of manganese and uranium, along with a simulation model of ore-forming fluids, demonstrate the influence of heterogeneity and of organic compounds on geochemical reactions associated with genesis of mineral deposits. In microscale environments, importance of heterogeneity and consequences of organic reactions in determining the distributions and concentrations cf. constituents are provided by several studies, including infiltration of sewage effluent and migration of creosote in coastal plain aquifers. These studies show that heterogeneity and the dominance of organically controlled reactions greatly increase the complexity of investigations

Modeling of regional groundwater flow in fractured rock aquifers, PhD Thesis, 1990, Kraemer, S. R.

The regional movement of shallow groundwater in the fractured rock aquifer is examined through a conceptual-deterministic modeling approach. The computer program FRACNET represents the fracture zones as straight laminar flow conductors in connection to regional constant head boundaries within an impermeable rock matrix. Regional scale fracture zones are projected onto the horizontal plane, invoking the Dupuit-Forchheimer assumption for flow. The steady state flow solution for the two dimensional case is achieved by requiring nodal flow balances using a Gauss-Seidel iteration. Computer experiments based on statistically generated fracture networks demonstrate the emergence of preferred flow paths due to connectivity of fractures to sources or sinks of water, even in networks of uniformly distributed fractures of constant length and aperture. The implication is that discrete flow, often associated with the local scale, may maintain itself even at a regional scale. The distribution of uniform areal recharge is computed using the Analytic Element Method, and then coupled to the network flow solver to complete the regional water balance. The areal recharge weakens the development of preferential flow pathways. The possible replacement of a discrete fracture network by an equivalent porous medium is also investigated. A Mohr's circle analysis is presented to characterize the tensor relationship between the discharge vector and the piezometric gradient vector, even at scales below the representative elementary volume (REV). A consistent permeability tensor is sought in order to establish the REV scale and justify replacement of the discrete fracture network by an equivalent porous medium. Finally, hydrological factors influencing the chemical dissolution and initiation of conduits in carbonate (karst) terrain are examined. Based on hydrological considerations, and given the appropriate geochemical and hydrogeological conditions, the preferred flow paths are expected to develop with time into caves.


IMPACT OF PAST SEDIMENT ECOLOGY ON ROCK FRACTURATION AND DISTRIBUTION OF CURRENT ECOSYSTEMS (JURA, FRANCE), 1991, Gaiffe M, Bruckert S,
Differences in the fracture type of limestone rocks have resulted in the formation of several main plant soil ecosystems in the montane and subalpine zones of the Jura (800-1 700 m). The sites were on stable landscape with slope < 5%. Locations were chosen to reflect the variation in physical properties of the bedrock and lithic contact. The rock fractures (densities and size), the shape and size of the fragments and the hydraulic conductivities were described and analyzed to characterize the 3 main bedrocks in the area studied (table 1): 1), lapiaz, ie, large rock fragments separated from each other by wide fractures (figs 1-2), 'broken' rocks traversed by numerous fine fractures (fig 2-3), paving-stones crossed by infrequent narrow fractures (fig 3). The effects of rock fracturing on vegetation (table II) and soil formation were significant in reference to porosity and permeability relationships (figs 6-7). Under similar precipitation, meteoric waters flow through the soil and porosity is relative to fracture systems (figs 4, 5). The weathering of cobbles in the soil profiles and along the lithic contacts maintains different soil solution Ca levels and is an important variable in soil and ecosystem formation (table III). Regarding the regional orogenic phases and the tectonic origin of the fractures, we postulate that the different types of fracturation originated from the different chemical and mineralogic composition of the rocks. Significant differences exist in both the calcite and dolomite content, in the insoluble residue content (table IV) and in the percentage of organic matter of the carbonate-free residues (table V, fig 8). The results indicate that the differences in rock composition arose early at about the period of sedimentation. The origin of the differentiation might be due to the sedimentation conditions and environment (fig 9). It is concluded that the present-day plant soil ecosystems may be related to the marine sediment environments of the Jurassic period (fig 10)

EVOLUTION OF QUATERNARY DURICRUSTS IN KARINGA CREEK DRAINAGE SYSTEM, CENTRAL AUSTRALIAN GROUNDWATER DISCHARGE ZONE, 1991, Arakel Av,
Quaternary calcrete, silcrete and gypcrete duricrusts in Karinga Creek drainage system, central Australia, contain abundant late-stage diagnetic features. These indicate repeated episodes of dissolution, precipitation and mobilization of duricrust components in the landscape, following the initial development of the duricrust mantle. 'Mature' duricrust profiles incorporate assemblages of diagnostic textural features and fabrics that clearly indicate the extent of karstification during the past 27 000 years. Diagenetic features in the duricrusts permit recognition of the stages involved in vadose modifications of compositional, textural and morphological features and, hence, assessment of the impact of karst dissolution, precipitation and mobilization of duricrust components under prevailing environmental conditions. At landscape level, the continued development of secondary porosity-permeability zones in topographically elevated areas, and maintenance of effective topographic gradients for soil creep are considered essential for redistribution of duricrust components and lateral and vertical extension of karst features within the Quaternary duricrust mantle. Although developing over a comparatively short span of time, late-stage modification of the Quaternary duricrusts has important implications for evolution of Quaternary landscapes and distribution of groundwater discharge-recharge patterns. Accordingly, differential dissolution and reprecipitation within the duricrust profiles have progressively given way to development of karst solution pipes and cavities, with the latter now acting as effective conduits for recharge of local aquifers in the region

LATE-STAGE DOLOMITIZATION OF THE LOWER ORDOVICIAN ELLENBURGER GROUP, WEST TEXAS, 1991, Kupecz J. A. , Land L. S. ,
Petrography of the Lower Ordovician Ellenburger Group, both in deeply-buried subsurface cores and in outcrops which have never been deeply buried, documents five generations of dolomite, three generations of microquartz chert, and one generation of megaquartz. Regional periods of karstification serve to subdivide the dolomite into 'early-stage', which predates pre-Middle Ordovician karstification, and 'late-stage', which postdates pre-Middle Ordovician karstification and predates pre-Permian karstification. Approximately 10% of the dolomite in the Ellenburger Group is 'late-stage'. The earliest generation of late-stage dolomite, Dolomite-L1, is interpreted as a precursor to regional Dolomite-L2. L1 has been replaced by L2 and has similar trace element, O, C, and Sr isotopic signatures, and similar cathodoluminescence and backscattered electron images. It is possible to differentiate L1 from L2 only where cross-cutting relationships with chert are observed. Replacement Dolomite-L2 is associated with the grainstone, subarkose, and mixed carbonate-siliciclastic facies, and with karst breccias. The distribution of L2 is related to porosity and permeability which focused the flow of reactive fluids within the Ellenburger. Fluid inclusion data from megaquartz, interpreted to be cogenetic with Dolomite-L2, yield a mean temperature of homogenization of 85 6-degrees-C. On the basis of temperature/delta-O-18-water plots, temperatures of dolomitization ranged from approximately 60 to 110-degrees-C. Given estimates of maximum burial of the Ellenburger Group, these temperatures cannot be due to burial alone and are interpreted to be the result of migration of hot fluids into the area. A contour map of delta-O-18 from replacement Dolomite-L2 suggests a regional trend consistent with derivation of fluids from the Ouachita Orogenic Belt. The timing and direction of fluid migration associated with the Ouachita Orogeny are consistent with the timing and distribution of late-stage dolomite. Post-dating Dolomite-L2 are two generations of dolomite cement (C1 and C2) that are most abundant in karst breccias and are also associated with fractures, subarkoses and grainstones. Sr-87/Sr-86 data from L2, C1, and C2 suggest rock-buffering relative to Sr within Dolomite-L2 (and a retention of a Lower Ordovician seawater signature), while cements C1 and C2 became increasingly radiogenic. It is hypothesized that reactive fluids were Pennsylvanian pore fluids derived from basinal siliciclastics. The precipitating fluid evolved relative to Sr-87/Sr-86 from an initial Pennsylvanian seawater signature to radiogenic values; this evolution is due to increasing temperature and a concomitant evolution in pore-water geochemistry in the dominantly siliciclastic Pennsylvanian section. A possible source of Mg for late-stage dolomite is interpreted to be from the dissolution of early-stage dolomite by reactive basinal fluids

DOLOMITE-ROCK TEXTURES AND SECONDARY POROSITY DEVELOPMENT IN ELLENBURGER GROUP CARBONATES (LOWER ORDOVICIAN), WEST TEXAS AND SOUTHEASTERN NEW-MEXICO, 1991, Amthor Je, Friedman Gm,
Pervasive early- to late-stage dolomitization of Lower Ordovician Ellenburger Group carbonates in the deep Permian Basin of west Texas and southeastern New Mexico is recorded in core samples having present-day burial depths of 1.5-7.0 km. Seven dolomite-rock textures are recognized and classified according to crystal-size distribution and crystal-boundary shape. Unimodal and polymodal planar-s (subhedral) mosaic dolomite is the most widespread type, and it replaced allochems and matrix or occurs as void-filling cement. Planar-e (euhedral) dolomite crystals line pore spaces and/or fractures, or form mosaics of medium to coarse euhedral crystals. This kind of occurrence relates to significant intercrystalline porosity. Non-planar-a (anhedral) dolomite replaced a precursor limestone/dolostone only in zones that are characterized by original high porosity and permeability. Non-planar dolomite cement (saddle dolomite) is the latest generation and is responsible for occlusion of fractures and pore space. Dolomitization is closely associated with the development of secondary porosity; dolomitization pre-and post-dates dissolution and corrosion and no secondary porosity generation is present in the associated limestones. The most common porosity types are non-fabric selective moldic and vuggy porosity and intercrystalline porosity. Up to 12% effective porosity is recorded in the deep (6477 m) Delaware basin. These porous zones are characterized by late-diagenetic coarse-crystalline dolomite, whereas the non-porous intervals are composed of dense mosaics of early-diagenetic dolomites. The distribution of dolomite rock textures indicates that porous zones were preserved as limestone until late in the diagenetic history, and were then subjected to late-stage dolomitization in a deep burial environment, resulting in coarse-crystalline porous dolomites. In addition to karst horizons at the top of the Ellenburger Group, exploration for Ellenburger Group reservoirs should consider the presence of such porous zones within other Ellenburger Group dolomites

EXPLORATION AND DEVELOPMENT OF GROUND-WATER FROM THE STONE FOREST KARST AQUIFERS OF SOUTH CHINA, 1992, Huntoon P. W. ,
Stone forest aquifers are the most widely exploited sources for ground water in the vast south China karst belt. These aquifers occupy a thin epikarst zone that has been infilled with clastic sediments. The aquifers are characterized by large lateral permeabilities and small reservoir capacities owing to their thinness. The carbonate rocks which comprise the framework for the aquifers are usually buried under the karst plains and large karst depressions where development is desired. The stone forest aquifer exploration procedure must first locate saturated zones. Second, those parts of the saturated zone having the greatest dissolution porosity must be identified because the infilled dissolution voids contain the water. The best indicators of saturation include the combination of low topography and the presence of active karst features such as springs, karst windows (natural openings exposing the water table), and live surface streams. These elements are readily observed on intermediate scale (1:20,000) aerial photography. The depth and degree of carbonate dissolution porosity is a function of several geologic and hydrologic factors including carbonate rock type, carbonate purity, fracture density, specific discharge, age of the circulation system, etc. These variables cannot be measured directly because the carbonate rocks are usually buried under a thin mantle of clastic sediments. However, if it is recognized that the ground-water system has already exploited the most favorable geology and that dissolution is an ongoing process, a simple indirect method can be used to identify the areas having the greatest porosity. The presence of karst depressions and recent sinkholes are indicative of the most intensely karstified and hydraulically active parts of the epikarst zone. Mapping of these surface features from stereo aerial photography is a simple geomorphology exercise that can be used to directly identify the most favorable well sites. Current well construction practices in the south China karst belt involve both dug and drilled wells. Dug wells are preferred in many locations owing to both cost-effectiveness associated with cheap labor and lack of available drilling equipment. The dug wells look and function identically to karst windows and thus conform to timeless water use traditions in the region

Results 1 to 15 of 236
You probably didn't submit anything to search for