Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That clay loam is a soil containing 27-40% clay, 20-45% sand, and the remainder silt.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
Engineering challenges in Karst, Stevanović, Zoran; Milanović, Petar
See all featured articles
Featured articles from other Geoscience Journals
Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy), Dimuccio, L.A.; Rodrigues, N.; Larocca, F.; Pratas, J.; Amado, A.M.; Batista de Carvalho, L.A.
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
See all featured articles from other geoscience journals

Search in KarstBase

Your search for petroleum (Keyword) returned 48 results for the whole karstbase:
Showing 1 to 15 of 48
Lichen and algae; agents of biodiagenesis in karst breccia from Grand Cayman Island, 1985, Jones Brian, Kahle C. F. ,

Nature and genesis of breccia bodies in Devonian strata, Peace Point area, Wood Buffalo park, Northeast Alberta, 1985, Park D. G. , Jones Brian,

Stratigraphy and sedimentology of Ordovician and Silurian strata, northern Brodeur Peninsula, Baffin Island, 1989, Nentwich Franz W. , Jones Brian,

Peace River Arch Wabamun Dolomite, tectonic or subaerial karst?, 1991, Workum R. H. ,

VARIOUS APPROACHES FOR FLOW SIMULATIONS IN A KARST - APPLICATION TO ROSPO MARE FIELD (ITALY), 1994, Corre B,
Rospo Mare field is located in the Adriatic Sea, 20 km of the Abruzzes coast, at an average depth of 80 m. The reservoir is a karst which is essentially conductive; yet unlike a conventional porous medium, it cannot be simulated by the usual tools and techniques of reservoir simulation. Therefore, several approaches were used to describe the flow mechanism during the production period in greater detail. The first approach consisted of generating three-dimensional images which were constrained by both petrophysical and geological factors and then, using up-scaling techniques, obtaining the equivalent permeabilities (scalar or tensorial) of grid blocks located in different zones within the karst. This approach shows that within the infiltration zone it is possible, whatever the scale, to find an equivalent homogeneous porous medium; on the other hand, within the epikarst this equivalent medium does not exist below pluridecametric dimensions. Thus it is impossible to study the sweeping mechanism on a small scale, so we must use a deterministic model which describes the network of pipes in the compact matrix, in which a waterflood is simulated by means of a conform finite-element model. This constituted the second approach. The third and final approach consisted of inventing a system of equations to analytically solve the pressure field in a network of vertical pipes which are intersected by a production drain and submitted to a strong bottom water-drive. This model allows us to simulate the water-oil contact rise within the reservoir and study the flows depending on the constraints applied to the production well. It appears that cross flows occur in the pipes even during the production period

DEBATE ABOUT IRONSTONE - HAS SOLUTE SUPPLY BEEN SURFICIAL WEATHERING, HYDROTHERMAL CONVECTION, OR EXHALATION OF DEEP FLUIDS, 1994, Kimberley M. M. ,
Ironstone is any chemical sedimentary rock with > 15% Fe. An iron formation is a stratigraphic unit which is composed largely of ironstone. The solutes which have precipitated to become ironstone have dissolved from the Earth's surface, from the upper crust, e.g. the basaltic layer of oceanic crust, or from deeper within the Earth. Genetic modellers generally choose between surficial weathering, e.g. soil formation, and hydrothermal fluids which have convected through the upper kilometre of oceanic crust. Most genetic modellers attribute cherty laminated iron formations to hydrothermal convection and noncherty oolitic iron formations to surficial weathering. However, both types of iron formations are attributable to the exhalation of fluids from a source region too deep for convection of seawater. Evidence for a deep source of ferriferous fluids comes from a comparison of ancient ironstone with modern ferriferous sediment in coastal Venezuela. A deep-source origin for ironstone has wide-ranging implications for the origins of other chemical sedimentary ores, e.g. phosphorite, manganostone, bedded magnesite, sedimentary uranium ore, various karst-filling ores, and even petroleum. Preliminary study of a modern oolitic iron deposit described herein suggests that the source of iron and silica to iron formations may have been even deeper than envisioned within most hydrothermal convection models

THE KASKASKIA PALEOKARST OF THE NORTHERN ROCKY-MOUNTAINS AND BLACK-HILLS, NORTHWESTERN USA, 1995, Palmer A. N. , Palmer M. V. ,
The Kaskaskia paleokarst, part of the Mississippian-Pennsylvanian unconformity in North America, is typified by sinkholes, fissures, and dissolution caves at and near the top of the Kaskaskia Sequence (Madison Limestone and equivalents) and is covered by basal Absaroka siliciclastics (Chesterian to Morrowan). In the Rocky Mountains and Black Hills of the northwestern U. S. A. it postdates earlier features produced by sulfate-carbonate interactions, including breccias, dissolution voids, bedrock alteration, and mineralization. Both the paleokarst and earlier features have been intersected by post-Laramide caves. Ore deposits, aquifers, and petroleum reservoirs in the region are also concentrated along both the paleokarst horizons and earlier sulfate-related features. Each phase of karst modified and preferentially followed the zones of porosity and structural weakness left by earlier phases, producing an interrelated complex of now-relict features. All should be considered together to explain the present aspect of the paleokarst

Petroleum geology of the Black Sea, 1996, Robinson A. G. , Rudat J. H. , Banks C. J. , Wiles R. L. F. ,
The Black Sea comprises two extensional basins formed in a back-arc setting above the northward subducting Tethys Ocean, close to the southern margin of Eurasia. The two basins coalesced late in their post-rift phases in the Pliocene, forming the present single depocentre. The Western Black Sea was initiated in the Aptian, when a part of the Moesian Platform (now the Western Pontides of Turkey) began to rift and move away to the south-east. The Eastern Black Sea probably formed by separation of the Mid-Black Sea High from the Shatsky Ridge during the Palaeocene to Eocene. Subsequent to rifting, the basins were the sites of mainly deep water deposition; only during the Late Miocene was there a major sea-level fall, leading to the development of a relatively shallow lake. Most of the margins of the Black Sea have been extensively modified by Late Eocene to recent compression associated with closure of the Tethys Ocean. Gas chromatography--mass spectrometry and carbon isotope analysis of petroleum and rock extracts suggest that most petroleum occurrences around the Black Sea can be explained by generation from an oil-prone source rock of most probably Late Eocene age (although a wider age range is possible in the basin centres). Burial history modelling and source kitchen mapping indicate that this unit is currently generating both oil and gas in the post-rift basin. A Palaeozoic source rock may have generated gas condensate in the Gulf of Odessa. In Bulgarian waters, the main plays are associated with the development of an Eocene foreland basin (Kamchia Trough) and in extensional structures related to Western Black Sea rifting. The latter continue into the Romanian shelf where there is also potential in rollover anticlines due to gravity sliding of Neogene sediments. In the Gulf of Odessa gas condensate has been discovered in several compressional anticlines and there is potential in older extensional structures. Small gas and oil discoveries around the Sea of Azov point to further potential offshore around the Central Azov High. In offshore Russia and Georgia there are large culminations on the Shatsky Ridge, but these are mainly in deep water and may have poor reservoirs. There are small compressional structures off the northern Turkish coast related to the Pontide deformation; these may include Eocene turbidite reservoirs. The extensional fault blocks of the Andrusov Ridge (Mid-Black Sea High) are seen as having the best potential for large hydrocarbon volumes, but in 2200 m of water

The Lower Triassic Montney Formation, west-central Alberta, 1997, Davies Gr, Moslow Tf, Sherwin Md,
The Lower Triassic Montney Formation was deposited in a west-facing, arcuate extensional basin, designated the Peace River Basin, on the northwestern margin of the Supercontinent Pangea, centred at about 30 degrees N paleolatitude. At least seasonally arid climatic conditions, dominance of northeast trade winds, minimum fluvial influx, offshore coastal upwelling, and north to south longshore sediment transport affected Montney sedimentation. Paleostructure, particularly highs over underlying Upper Devonian Leduc reefs and lows associated with graben trends in the Peace River area, strongly influenced Montney depositional and downslope mass-wasting processes. A wide range of depositional environments in the Montney is recorded by facies ranging from mid to upper shoreface sandstones, to middle and lower shoreface HCS sandstones and coarse siltstones, to finely laminated lower shoreface sand and offshore siltstones. and to turbidites. Dolomitized coquinal facies occur at seven stratigraphic horizons in the Montney. Some coquinas are capped by karst breccias and coarse-grained aeolian deflation lag sand residues indicating subaerial exposure. The Montney has been divided into three informal members that have been dated by palynology and compared with global Early Triassic sequences. The subdivisions are: the Lower member, of Griesbachian to Dienerian age, correlated with a third-order cycle; the Coquinal Dolomite Middle member, of mixed Dienerian and Smithian ages; and the Upper member, of Smithian to Spathian age, correlative with two, shorter-duration third-order cycles. A forced regressive wedge systems tract model is adopted for deposition of the Coquinal Dolomite Middle member and for turbidites in the Valhalla-La Glace area of west-central Alberta. With this model, coquinas and turbidites accumulated during falling base level to lowstand, with a basal surface of forced regression at the base of the coquina and a sequence boundary at the top of the coquinal member. This is supported by the evidence for subaerial exposure and maximum lowstand at the top of the coquina. Very limited grain size distribution in the Montney, dominantly siltstone to very fine-grained sandstone, but often very well sorted, is interpreted to reflect an aeolian influence on sediment source and transport, High detrital feldspar and detrital dolomite in the Montney are consistent with (but not proof of) aeolian source from an arid interior, as is high detrital mica content in finer size grades. Extensive and often pervasive dolomitization, and early anhydrite cementation within the Montney, are also consistent with an arid climatic imprint. As new exploratory drilling continues to reveal the wide range of facies in the Montney, it adds to both the complexity and potential of this relatively unique formation in western Canada

Migration of dissolved petroleum hydrocarbons, MTBE and chlorinated solvents in a karstified limestone aquifer, Stamford, UK, 1998, Banks D,
Two incidents of hydrocarbon contamination to the Lincolnshire Limestone in east Stamford, UK, have been investigated. No evidence of LNAPL contamination of groundwater was observed, suggesting that the spills may largely have been retained in the unsaturated zone. Some groundwater contamination by dissolved hydrocarbons occurred, apparently especially at times of high recharge. Rapid flow paths were proven to nearby springs in the River Welland (with groundwater flow velocities of up to 240 m day-1), and dissolved hydrocarbon and MTBE contamination appears to have been flushed rapidly from these systems. MTBE contamination at Tallington Pumping Station (5 km east of the site) is not clearly linked to these incidents. Of potentially more concern was the discovery of dissolved chlorinated solvent contamination in the groundwater at the spill sites, possibly related to a landfilled quarry and/or a nearby engineering works. No direct evidence of DNAPL was observed. A conceptual model of solvent distribution suggests independent sources of TCE, PCE and TCA

Paleokarsts in late Precambrian and Ordovician carbonates, Kalpin-Shaya uplift zone, Tarim basin, China, 1999, Cao Hs, Yang Jd, Wang Dn,
The reservoir properties in the Kalpin-Shaya uplift zone, Tarim basin, are a common concern with regards to petroleum exploration and reservoir evaluation alike. Dissolution and paleokarst have a positive impact on the porosity as well as the storage capacity of carbonate reservoirs because the secondary porosity related to dissolution and paleokarst serves as excellent traps for migrating hydrocarbons. In order to evaluate the reservoir characteristics reasonably in the late Precambrian and Ordovician carbonate rocks, the secondary porosity, which was produced by dissolution and paleokarstification in late diagenetic stage. should be studied because the primary pores were mostly destroyed during the early-middle diagenesis due to serious compaction and multi-cementation. Carbonate rocks ate among the most important collectors of oil and gas accumulations in the world Important oil and gas reservoirs in paleokarst-containing carbonate rocks are known worldwide because micropores and megapores, such as solution openings, solution fissures, funnels, sinkholes. and caves, serve as the fundamentally important secondary porosity in those rocks. Several wells revealed that the Kalpin-Shaya region is a prospective target for oil and gas exploration. The reservoir carbonates of the Kalpin-Shaya uplift zone in the northern Tarim include dolomites and limestones. The best dolomite reservoirs are in the late Precambrian Qigebulake Formation (Z(2)(2)), the lower Qiulitage Group (is an element of(2-3)), the upper Qiulitage Group (O-1(1)), smd the Xiaoerbulake Formation (is an element of(1)), whereas limestone reservoirs are in the middle-upper formations of the upper Qiulitage Group (O-1(2-3)). On the basis of the study of petrology, paleontology, and stratigraphy from field work and well core data, the pore spaces within the Precambrian and Ordovician carbonate reservoirs are studied with the aim of proving that all secondary pores are controlled by dissolution and paleokarst

Basement lithology and its control on sedimentation, trap formation and hydrocarbon migration, Widuri-Intan oilfields, SE Sumatra, 1999, Tonkin P. C. , Himawan R. ,
The Widuri-lntan oilfields produce from late Oligocene sandstones of the Talang Akar Formation, which were deposited in a fluid-to-deltaic setting on the NW side of the Asri Basin, offshore SE Sumatra. The Asri Basin is of rift origin and formed during the early Oligocene, with its axis oriented in a NE-SW direction. Approximately 310 million brls of oil have been produced from the fields within the 12-by-12 mile (20-by-20 km) study area. The oil occurs in a series of structural and stratigraphic traps within slightly sinuous to meandering channel sandstone bodies. The reservoir sequence (sandstone interbedded with minor mudstone and coal) overlies basement rocks, which are predominantly Cretaceous in age. Forty-nine well penetrations have shown that the basement is composed of one of four lithologies: IB hornblende granodiorite; (2) metamorphic rocks, mainly mica schist; (3) plugs of metabasalt and related volcanic rocks; or (4) dolomitic limestone. A combination of drill cuttings, sidewall and conventional cores and FMS/FMI images has been used to identify and map the distribution of basement rock type. The basement was subjected to exposure and deep weathering prior to the formation of the Asri Basin, as evidenced by the zones of surface alteration encountered during drilling. The basement palaeotopography had a strong influence on the later distribution of major fluvial channels and sand pinch-outs. Several major faults appear to be controlled by basement lithology, especially at the boundaries of granodiorite and metabasalt intrusives. An important shear zone, oriented NW-SE, appears to have offset the basement between the main Widuri and Intan fields, and was subsequently the site of silicification of the mica schists in the basement. The Lidya field is situated where the reservoir pinches out onto eroded areas of basement silicification along this shear zone. Palaeocurrents in the upper 34-2 and 34-1 channel sandstones in the Widuri field were controlled by the orientation of this basement feature . Drape and compaction ofOligocene Talang Akar Formation sediments over eroded volcanic plugs have defined or enhanced a number of structural/stratigraphic plays, including the Widuri and Chesy fields. From seismic and well evidence, the reservoir sequence at the Indri field is underlain by dolomitic limestone and exhibits a series of unusual karst-related sinkhole and collapse structures. These are circular to slightly elliptical in shape, and extend from basement level to over 900 ft vertically into the overlying Talang Akar Formation

Mesozoic dissolution tectonics on the West Central Shelf, UK Central North Sea, 1999, Clark Ja, Cartwright Ja, Stewart Sa,
3-D seismic mapping of the Upper Jurassic Kimmeridge Clay Formation on the West Central Shelf in the Central North Sea reveals a complex fault array which is constrained by seismic interpretation and well control to be of late Jurassic/early Cretaceous age. Fault shapes in plan-view range from linear to circular. Linear fault lengths are 200-300 m to 5 km, the strongly curved and circular faults range in diameter from 100-1000 m. Fault trends are apparently random and display no correlation in location or trend with basement (sub-Zechstein) structures. There is, however, a strong link between this fault pattern and the structure of the top Zechstein (top salt) surface. Linear faults occur at the edges of elongate salt walls and the circular faults lie directly above structures which have been interpreted here as tall, steep-sided salt chimneys. The salt chimneys are present only in the thick, elongate minibasins of Triassic sediment which lie between the salt walls. It is argued that salt dissolution controls the timing, location, orientation and shape of the late Jurassic/early Cretaceous faults. A model is provided to account for the development of both salt walls and chimneys. We suggest that early Triassic karstification of the Zechstein evaporites led to development of an array of circular collapse features. During the ensuing episode of Triassic halokinesis which led to minibasin subsidence and salt wall growth, salt passively 'intruded' the circular collapse features within the subsiding minibasins to form narrow salt chimneys. The resulting array of salt walls and chimneys was subject to dissolution during subsequent subaerial exposure and the late Jurassic marine transgression of the basin (creating the observed fault array), prior to sealing of the salt from circulating groundwater by compaction of the Upper Jurassic and Lower Cretaceous shales which blanket the area. (C) 1999 Elsevier Science Ltd. All rights reserved

History of the Sulfuric Acid Theory of Speleogenesis in the Guadalupe Mountains, New Mexico, 2000, Jagnow, D. H. , Hill, C. A. , Davis, D. G. , Duchene, H. R. , Cunningham, K. I. , Northup, D. E. , Queen, J. M.
The history of events related to the sulfuric acid theory of cave development in the Guadalupe Mountains, New Mexico, USA, is traced from its earliest beginnings to the present. In the 1970s and early 1980s, when this hypothesis was first introduced, the reaction was one of skepticism. But as evidence mounted, it became more accepted by both the speleological and geological communities. Nearly 30 years after it was introduced, this theory is now almost universally accepted. In the last decade, the sulfuric acid theory of Guadalupe caves has been applied to other caves around the world. It has also impacted such diverse fields as microbiology, petroleum geology, and economic ore geology. This theory now stands as one of the key concepts in the field of speleology.

Microbiology and geochemistry in a hydrogen-sulphide-rich karst environment, 2000, Hose Louise D. , Palmer Arthur N. , Palmer Margaret V. , Northup Diana E. , Boston Penelope J. , Duchene Harvey R. ,
Cueva de Villa Luz, a hypogenic cave in Tabasco, Mexico, offers a remarkable opportunity to observe chemotrophic microbial interactions within a karst environment. The cave water and atmosphere are both rich in hydrogen sulphide. Measured H2S levels in the cave atmosphere reach 210 ppm, and SO2 commonly exceeds 35 ppm. These gases, plus oxygen from the cave air, are absorbed by freshwater that accumulates on cave walls from infiltration and condensation. Oxidation of sulphur and hydrogen sulphide forms concentrated sulphuric acid. Drip waters contain mean pH values of 1.4, with minimum values as low as 0.1.The cave is fed by at least 26 groundwater inlets with a combined flow of 200-300 l/s. Inlet waters fall into two categories: those with high H2S content (300-500 mg/l), mean PCO2=0.03-0.1 atm, and no measurable O2; and those with less than 0.1 mg/l H2S, mean PCO2=0.02 atm, and modest O2 content (up to 4.3 mg/l). Both water types have a similar source, as shown by their dissolved solid content. However, the oxygenated water has been exposed to aerated conditions upstream from the inlets so that original H2S has been largely lost due to outgassing and oxidation to sulphate, increasing the sulphate concentration by about 4%. Chemical modelling of the water shows that it can be produced by the dissolution of common sulphate, carbonate, and chloride minerals.Redox reactions in the cave appear to be microbially mediated. Sequence analysis of small subunit (16S) ribosomal RNA genes of 19 bacterial clones from microbial colonies associated with water drips revealed that 18 were most similar to three Thiobacilli spp., a genus that often obtains its energy from the oxidation of sulphur compounds. The other clone was most similar to Acidimicrobium ferrooxidans, a moderately thermophilic, mineral-sulphide-oxidizing bacterium. Oxidation of hydrogen sulphide to sulphuric acid, and hence the cave enlargement, is probably enhanced by these bacteria.Two cave-enlarging processes were identified. (1) Sulphuric acid derived from oxidation of the hydrogen sulphide converts subaerial limestone surfaces to gypsum. The gypsum falls into the cave stream and is dissolved. (2) Strongly acidic droplets form on the gypsum and on microbial filaments, dissolving limestone where they drip onto the cave floors.The source of the H2S in the spring waters has not been positively identified. The Villahermosa petroleum basin within 50 km to the northwest, or the El Chichon volcano [small tilde]50 km to the west, may serve as source areas for the rising water. Depletion of 34S values (-11.7[per mille sign] for sulphur stabilized from H2S in the cave atmosphere), along with the hydrochemistry of the spring waters, favour a basinal source

Results 1 to 15 of 48
You probably didn't submit anything to search for