Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That finite element method is a numerical method used to approximate the solution of partial differential equations.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
Engineering challenges in Karst, Stevanović, Zoran; Milanović, Petar
See all featured articles
Featured articles from other Geoscience Journals
Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy), Dimuccio, L.A.; Rodrigues, N.; Larocca, F.; Pratas, J.; Amado, A.M.; Batista de Carvalho, L.A.
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
See all featured articles from other geoscience journals

Search in KarstBase

Your search for porosity development (Keyword) returned 12 results for the whole karstbase:
Pervasive early- to late-stage dolomitization of Lower Ordovician Ellenburger Group carbonates in the deep Permian Basin of west Texas and southeastern New Mexico is recorded in core samples having present-day burial depths of 1.5-7.0 km. Seven dolomite-rock textures are recognized and classified according to crystal-size distribution and crystal-boundary shape. Unimodal and polymodal planar-s (subhedral) mosaic dolomite is the most widespread type, and it replaced allochems and matrix or occurs as void-filling cement. Planar-e (euhedral) dolomite crystals line pore spaces and/or fractures, or form mosaics of medium to coarse euhedral crystals. This kind of occurrence relates to significant intercrystalline porosity. Non-planar-a (anhedral) dolomite replaced a precursor limestone/dolostone only in zones that are characterized by original high porosity and permeability. Non-planar dolomite cement (saddle dolomite) is the latest generation and is responsible for occlusion of fractures and pore space. Dolomitization is closely associated with the development of secondary porosity; dolomitization pre-and post-dates dissolution and corrosion and no secondary porosity generation is present in the associated limestones. The most common porosity types are non-fabric selective moldic and vuggy porosity and intercrystalline porosity. Up to 12% effective porosity is recorded in the deep (6477 m) Delaware basin. These porous zones are characterized by late-diagenetic coarse-crystalline dolomite, whereas the non-porous intervals are composed of dense mosaics of early-diagenetic dolomites. The distribution of dolomite rock textures indicates that porous zones were preserved as limestone until late in the diagenetic history, and were then subjected to late-stage dolomitization in a deep burial environment, resulting in coarse-crystalline porous dolomites. In addition to karst horizons at the top of the Ellenburger Group, exploration for Ellenburger Group reservoirs should consider the presence of such porous zones within other Ellenburger Group dolomites

Major ion concentrations in 404 springs in carbonate strata were found to exhibit a wide range in sulfate values. Sulfate concentrations are often much larger than would be expected from the analysis of samples from surface outcrops. Springs in the Sierra Madre Oriental (Mexico), the Rocky Mountains Front Range (Canada), and the Peak District (England) show similarities in sulfate concentration and in spatial distribution. Springs with high sulfate concentrations are found close to base level and are thermal. Springs with low sulfate concentration are found at higher elevations above base level and are not thermal. There is a direct relationship between sulfate concentration and spring temperature, and an inverse relationship with discharge. The results from the three areas described support a model of local and regional flow patterns, with deep regional flow providing the warm sulfate-rich water. The initial fracture porosity development in these aquifers may owe as much to the removal of sulfur minerals as to the removal of carbonate minerals. High sulfate values are frequently found in carbonate aquifers, so this model may be of widespread applicability

Dedolomitization as a driving mechanism for karst generation in Permian Blaine formation, southwestern Oklahoma, USA, 1997, Raines M. A. , Dewers T. A. ,
Cyclic deposits of Permian shales, dolomites, and halite and gypsum-bearing strata in the Blaine Formation of Southwestern Oklahoma contain abundant karst features. The present study shows that an important mechanism of karst development in these sequences is dedolomitization, wherein gypsum and dolomite in close spatial proximity dissolve and supersaturate groundwaters with respect to calcite. The net loss of mass accompanying this process (dolomite and gypsum dissolution minus calcite precipitation) can be manifest in secondary porosity development while the coupled nature of this set of reactions results in the retention of undersaturated conditions of groundwater with respect to gypsum. The continued disequilibrium generates karst voids in gypsum-bearing aquifers, a mineral-water system that would otherwise rapidly equilibrate. Geochemical modeling (using the code PHRQPITZ, Plummer et al 1988) of groundwater chemical data from Southwestern Oklahoma from the 1950's up to the present suggests that dedolomitization has occurred throughout this time period in evaporite sequences in Southwestern Oklahoma. Reports from groundwater well logs in the region of vein calcite suggest secondary precipitation, an observation in accord with dedolomite formation In terms of the amounts of void space produced by dissolution, dedolomitization can dominate gypsum dissolution alone, especially in periods of quiescent aquifer recharge when gypsum-water systems would have otherwise equilibrated and karst development ceased. Mass balance modeling plus molar volume considerations show that for every cubic cm of original rock (dolomite plus gypsum), there is 0.54 cm(3) of calcite and 0.47 cm(3) of void space produced Only slightly more pore space results if the dedolomitization reaction proceeds by psuedomorphic replacement of dolomite by calcite than in a reaction mechanism based on conservation of bicarbonate

Geologic controls on porosity development in the Maynardville limestone, Oak Ridge, Tennessee, 1997, Goldstrand P. M. , Shevenell L. A. ,
Understanding the geologic controls of porosity development and their relationship to the karst aquifer system in the Cambrian Maynardville Limestone is important in determining possible contaminant transport pathways and provides essential data for hydrologic models within the Oak Ridge Reservation of east Tennessee. In the Maynardville Limestone, several important factors control porosity development: (1) lithologic controls on secondary microporosity and mesoporosity are related to dissolution of evaporite minerals and dedolomitization in supratidal facies; (2) depth below the ground surface controls the formation of karst features because the most active portion of the groundwater system is at shallow depths, and karst features are rare below approximate to 35 m; and (3) structural controls are related to solution enlargement of fractures and faults

Groundwater circulation and geochemistry of a karstified bank-marginal fracture system, South Andros Island, Bahamas, 1997, Whitaker Fiona F. , Smart Peter L. ,
On the east coast of South Andros Island, Bahamas, a major bank-marginal fracture system characterised by vertically extensive cavern systems (blue holes) is developed sub-parallel to the steep-sided deep-water re-entrant of the Tongue of the Ocean. In addition to providing a discharge route for meteoric, mixed and geochemically evolved saline groundwaters, a strong local circulation occurs along the fracture system. This generates enhanced vertical mixing within voids of the fracture system, evidenced by the increasing mixing zone thickness, and the thinning and increasing salinity of brackish lens waters from north to south along the fracture system. Furthermore, tidally driven pumping of groundwaters occurs between the fracture and adjacent carbonate aquifer affecting a zone up to 200 m either side of the fracture.The resultant mixing of groundwaters of contrasting salinity and within and along the fracture system and with the surrounding aquifer waters, together with bacterial oxidation of organic matter, generates significant potential for locally enhanced diagenesis. Undersaturation with respect to calcite within the fresh (or brackish)-salt water mixing zone is observed in the fracture system and predicted in the adjacent aquifer, while mixing between the brackish fracture lens and surrounding high fresh waters causes dissolution of aragonite but not calcite. The latter gives rise to considerable secondary porosity development, because active tidal pumping ensures continued renewal of dissolutional potential. This is evidenced by calcium and strontium enrichment in the brackish lens which indicates porosity generation by aragonite dissolution at a maximum rate of 0.35% ka-1, up to twice the average estimated for the fresh water lens. In contrast saline groundwaters are depleted in calcium relative to open ocean waters suggesting the formation of calcite cements.The development of a major laterally continuous cavernous fracture zone along the margin of the carbonate platform permits enhanced groundwater flow and mixing which may result in generation of a diagenetic `halo' at a scale larger than that generally recognised around syn-sedimentary fractures in fossil carbonates. This may be characterised by increased secondary porosity where a relative fall in sea-level results in exposure and formation of a meteoric groundwater system, or cementation by `marine' calcite both below this meteoric system, and where the bank surface is flooded by seawater

Some case studies of speleogenesis by sulfuric acid, 2000, Lowe D. J. , Bottrell S. H. , Gunn J.
Minerals that can weather to produce sulfuric acid directly or indirectly, with or without microbial mediation, occur as trace components in most carbonate sequences, but they are more concentrated at specific horizons. The latter comprise beds of atypical lithology, together termed inception horizons, and they are commonly associated with breaks between major depositional cycles. Some cycle boundaries are marked by concentrations of sulfide minerals, particularly pyrite, that are readily oxidized to generate sulfuric acid. Cycle boundaries may also be marked by the presence of primary evaporite minerals such as gypsum, and their removal by direct dissolution or by their reduction to hydrogen sulfide may be implicated in early porosity development. Though few caves in carbonate sequences are largely, or entirely, the product of calcite dissolution by sulfuric acid or of evaporite removal, such processes may play an important role in cave inception. This chapter examines a number of situations where processes other than carbonic acid dissolution have played an important role in secondary porosity generation and influenced subsequent speleogenesis.

Karst development on carbonate islands, 2003, Mylroie J. E. , Carew J. L.

Karst development on carbonate platforms occurs continuously on emergent portions of the platform. Surficial karst processes produce an irregular pitted and etched surface, or epikarst. The karst surface becomes mantled with soil, which may eventually result in the production of a resistant micritic paleosol. The epikarst transmits surface water into vadose pit caves, which in turn deliver their water to a diffuse-flow aquifer. These pit caves form within a 100,000 yr time frame. On islands with a relatively thin carbonate cover over insoluble rock, vadose flow perched at the contact of carbonate rock with insoluble rock results in the lateral growth of vadose voids along the contact, creating large collapse chambers that may later stope to the surface.
Carbonate islands record successive sequences of paleosols (platform emergence) and carbonate sedimentation (platform submergence). The appropriate interpretation of paleosols as past exposure surfaces is difficult, because carbonate deposition is not distributed uniformly, paleosol material is commonly transported into vadose and phreatic voids at depth, and micritized horizons similar in appearance to paleosols can develop within existing carbonates.
On carbonate islands, large dissolution voids called flank margin caves form preferentially in the discharging margin of the freshwater lens from the effects that result from fresh-water/salt-water mixing. Similarly, smaller dissolution voids also develop at the top of the lens where vadose and phreatic fresh-waters mix. Independent of fluid mixing, oxidation of organic carbon and oxidation/reduction reactions involving sulfur can produce acids that play an important role in phreatic dissolution. This enhanced dissolution can produce caves in fresh-water lenses of very small size in less than 15,000 yr. Because dissolution voids develop at discrete horizons, they provide evidence of past sea-level positions. The glacio-eustatic sea-level changes of the Quaternary have overprinted the dissolutional record of many carbonate islands with multiple episodes of vadose, fresh-water phreatic, mixing zone, and marine phreatic conditions. This record is further complicated by collapse of caves, which produces upwardly prograding voids whose current position does not correlate with past sea level positions.
The location and type of porosity development on emergent carbonate platforms depends on the degree of platform exposure, climate, carbonate lithology, and rate of sea-level change. Slow, steady, partial transgression or regression will result in migration of the site of phreatic void production as the fresh-water lens changes elevation and moves laterally in response to sea-level change. The result can be a continuum of voids that may later lead to development solution-collapse breccias over an extended area.

MOPOD: a generic model of porosity development, 2005, Bloomfield Jp, Barker Ja,
A code, MOPOD, has been developed to investigate general relationships between simple porosity growth laws and pore growth phenomena. MOPOD has been formulated as an initial value problem' and to date, investigations have focused on a very simple porosity growth law of the form dai(t)/dt = vei, where e is the aperture growth rate exponent. A range of qualitatively distinct evolved geometries have been described for porosity growth on 2D and 3D arrays of varying geometries and connectivities as a function of the exponent, e, of the aperture growth-rate law, and the width of the initial aperture distribution, {sigma}z. At low growth-rate exponents and moderate values of {sigma}z over time there is a homogenization of apertures oriented sub-parallel to the head gradient. At moderate growth-rate exponents these apertures become increasingly heterogeneous in evolved arrays, with planar heterogeneities developing sub-parallel to the head gradient for low values of {sigma}z while anastomosing structures develop at higher values of {sigma}z. For larger growth-rate exponents preferentially enlarged array-spanning paths develop. No self-organization phenomena have been observed because periodic or cyclic behaviour is not inherent in the simple growth laws investigated to date

Three-dimensional seismic-based definition of fault-related porosity development: TrentonBlack River interval, Saybrook, Ohio, 2006, Sagan J. A. , Hart B. S.

Oil and gas reservoirs of the Ordovician Trenton–Black River interval in the Appalachian Basin are commonly associated with fault-related hydrothermal dolomites. However, relationships between porosity development and fault geometry in these fields are poorly documented. In this article, we integrate three-dimensional (3-D) seismic and wire-line data from the Trenton–Black River interval at Saybrook field in northeastern Ohio to study relationships between faulting and porosity development there. Faults were mapped using a combination of amplitude and coherency versions of the seismic data, and a 3-D porosity volume was generated for the Trenton–Black River interval by integrating attributes derived from the seismic data with log-based measures of porosity.

The productive trend in the Trenton–Black River interval at Saybrook is controlled by a 3.4-mi (5.5-km)-long, northwest-southeast–oriented basement fault that was probably reactivated during the Taconic orogeny (i.e., Late Ordovician). Strike-slip movement along the fault generated en echelon synthetic shear faults that branch at least 1350 ft (411.5 m) upward into the Trenton–Black River interval. The best porosity is developed in areas between overlapping synthetic shear faults. Antithetic shear faults probably formed at these locations and, when combined with minor dip-slip movement, created conduits for subsequent porosity-generating fluids. Circular collapse structures associated with localized extension between overlapping shear faults are the primary drilling targets, and horizontal wells running parallel to the strike of the fault would have the best chances of intercepting good porosity development.

Justine Sagan obtained her B.Sc. and M.Sc. degrees in the Earth and Planetary Sciences Department at McGill University. The work presented in this article is based on her M.Sc. thesis. She is currently employed by Devon Canada Corporation in Calgary.

 Bruce Hart held positions with the Geological Survey of Canada, Pennsylvania State University, and the New Mexico Bureau of Mines and Mineral Resources prior to joining McGill University in 2000. His research focuses on the integration of three-dimensional seismic and other data types for reservoir characterization programs. He has been an associate editor of the AAPG

Brackish springs in coastal aquifers and the role of calcite dissolution by mixing waters , 2007, Sanz Escud, Esteban

Brackish springs are relatively frequent phenomena in coastal carbonate formations and their existence has been extensively reported in Mediterranean coasts. In fact, more than 300 brackish springs have been identified only in the coast of the former Yugoslavia. They essentially consist of inland or submarine karst outlets discharging waters with flow-dependent salinity. The phenomenon is particularly surprising in inland springs, where high flow rates with significant salinities (presumablyBrackish springs are relatively frequent phenomena in coastal carbonate formations and their existence has been extensively reported in Mediterranean coasts. In fact, more than 300 brackish springs have been identified only in the coast of the former Yugoslavia. They essentially consist of inland or submarine karst outlets discharging waters with flow-dependent salinity. The phenomenon is particularly surprising in inland springs, where high flow rates with significant salinities (presumably


Hypogene speleogenesis is widespread throughout the Delaware Basin region as evidenced by intrastratal dissolution, hypogenic caves and suites of diagenetic minerals. The world famous carbonate caves of the Capitan reef facies of the Guadalupe Mountains have long been associated with sulfuric acid processes and recently have been associated with semi-confined, hypogene dissolution. However, evaporite karst within Permian backreef and basin-filling facies has been traditionally associated with surficial, epigene processes. On the eastern edge of the Delaware Basin cavernous porosity associated with oil reservoirs in Permian carbonates have been attributed to eogenetic karst processes.
Interbedded (evaporite / carbonate), backreef facies within the mid-Permian Seven Rivers Formation exhibit characteristics of hypogene karst associated with semi-confined dissolution controlled by the eastward migration and entrenchment of the Pecos River. Coffee Cave is a good example of hypogene dissolution, forming a multi-storey, rectilinear maze with abundant distinctive morphologic feature suites (i.e. risers, channels and cupolas) indicative of hypogene speleogenesis. Other caves within the Seven Rivers and Rustler Formations show similar patterns, although often less well developed.
Within the Delaware Basin, Castile Formation evaporites have been extensively modified by hypogene processes. Field mapping coupled with GIS analyses clearly shows that karst development and evaporite calcitization are highly clustered throughout the outcrop area. Individual caves commonly exhibit complex morphologies, including complete suites of morphologic features indicative of intrastratal dissolution. Clusters of hypogene caves are commonly associated with clusters of evaporite calcitization and often occurrences of secondary selenite bodies, suggesting all three are genetically related. Brecciated cores and associated native sulfur deposits indicate that calcitized evaporites are the result of semi-confined sulfate reduction in the presence of ascending hydrocarbons. Hypogene caves are currently being overprinted by epigene processes as surface denudation results in breaching of previously confined solutional conduits. However, calcitized evaporites stand as resistant masses attesting to the widespread importance of hypogene processes within the Castile Formation.
On the southern end of the Central Basin Platform, the spatial distribution of cavernous porosity, secondary mineralization and abundant karst fabrics within the Yates Field carbonate strata provide convincing evidence that karst porosity, at least locally, within the San Andres and overlying Permian strata is the result of hypogene speleogenesis. Porosity development appears to have been enhanced by high geothermal gradients and the addition of sulfuric acid-rich fluids, reminiscent of the same processes that have been proposed for the extensive carbonate caves of the Guadalupe Mountains.
Recognition of the widespread occurrence of hypogene speleogenesis throughout the Delaware Basin region indicates that the regional diagenetic evolution has been significantly affected by confined fluid migration, including not only the development of porosity but also the emplacement of many secondary mineral deposits. Therefore, future natural resource management plans must consider the nature of hypogene karst in site evaluations throughout the region in order to better predict geohazards, potential groundwater contamination and characterize mineral resources.



The leading role in the geomorphic development of the Crimean fore-mountain region is played by the processes of dismemberment of “shielding” limestone layers of the monoclinal stratified structure through valley entrenchment, and by further retreat of vertical rocky outcrops via block-toppling mechanism. These processes are guided by the presense of hypogene karst structures, whose formation preceded the modern relief. Karstified fracture-karst zones, 100 to 400 m wide, in the Cretaceous-Paleogene strata controlled the entrenchment of valleys in the limestone layers. The basic elements of hypogenic karst structures, which form their spatial framework, are sub-vertical fracture-karst conduits (karst “rifts”). Denudational opening of vertical fracture-karst rift conduits in limestone layers set the cliff-like shape of valleys slopes, and presence of such rift conduits in the rear of cliffs of already incised valleys determines the block-toppling mechanisms of slope retreat. This maintains the verticality of cliff segments in the cuesta ridge and controls their position. Hypogenic sculptural morphology is extensively displayed in the exposed walls of cliffs (former conduit walls), which determines the originality and nomenclature of morphology of limestone cliffs of the Inner Ridge. In those areas of slopes where position of cliffs has stabilized for considerable time due to absence of new lines of block detachment in the rear, weathering becomes a significant process in the morphogenesis of surfaces. The abundance, outstanding expression, preservation and accessibility of relict hypogene karst features in the extensive cuesta cliffs of the Inner Ridge makes the region the foremost one for studying regularities of hypogene solution porosity development, the process currently ongoing in the adjacent artesian basin of the Plain Crimea.

Results 1 to 12 of 12
You probably didn't submit anything to search for