Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That net radiation is the sum of incident and reflected sun and sky shortwave radiation plus incident and reflected atmospheric long-wave radiation [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
Engineering challenges in Karst, Stevanović, Zoran; Milanović, Petar
See all featured articles
Featured articles from other Geoscience Journals
Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy), Dimuccio, L.A.; Rodrigues, N.; Larocca, F.; Pratas, J.; Amado, A.M.; Batista de Carvalho, L.A.
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
See all featured articles from other geoscience journals

Search in KarstBase

Your search for porosity (Keyword) returned 250 results for the whole karstbase:
Showing 1 to 15 of 250
Basic concepts in the theory of homogeneous liquids in fractured rocks,, 1960, Barenblatt, G. E. , I. P. Zheltov, And I. N. Kochina

Geological nomenclature and classification of porosity in sedimentary carbonates, 1970, Choquette P. W. , Pray L. C.

Sries carbonates, karsts, et formes splologiques du Shaba (Zare), 1984, Buffart, R.
LIMESTONE FORMATIONS, KARSTS, AND CAVES IN SHABA PROVINCE (ZAIRE) - Zaire have numerous Precambrian carbonated formations, especially in the Shaba district. Both "Kakontwe" and "Lubudi" limestones, with large outcrops and tectonic porosity are favourable for cave genesis.

Yates and other Guadalupian (Kazanian) oil fields, U. S. Permian Basin, 1990, Craig Dh,
More than 150 oil and gas fields in west Texas and southeast New Mexico produce from dolomites of Late Permian (Guadalupian [Kazanian]) age. A majority of these fields are situated on platforms or shelves and produce from gentle anticlines or stratigraphic traps sealed beneath a thick sequence of Late Permian evaporites. Many of the productive anticlinal structures are elongate parallel to the strike of depositional facies, are asymmetrical normal to facies strike, and have flank dips of no more than 6{degrees}. They appear to be related primarily to differential compaction over and around bars of skeletal grainstone and packstone. Where the trapping is stratigraphic, it is due to the presence of tight mudstones and wackestones and to secondary cementation by anhydrite and gypsum. The larger of the fields produce from San Andres-Grayburg shelf and shelf margin dolomites. Cumulative production from these fields amounts to more than 12 billion bbl (1.9 x 109 m3) of oil, which is approximately two-thirds of the oil produced from Palaeozoic rocks in the Permian Basin. Eighteen of the fields have produced in the range from 100 million to 1.7 billion bbl (16-271 x 106 m3). Among these large fields is Yates which, since its discovery in October 1926, has produced almost 1.2 billion bbl (192 x 106 m3) out of an estimated original oil-in-place of 4 billion bbl (638 x 106 m3). Flow potentials of 5000 to 20 000 bbl (800 to 3200 m3) per day were not unusual for early Yates wells. The exceptional storage and flow characteristics of the Yates reservoir can be explained in terms of the combined effects of several geologic factors: (1) a vast system of well interconnected pores, including a network of fractures and small caves; (2) oil storage lithologies dominated by porous and permeable bioclastic dolograinstones and dolopackstones; (3) a thick, upper seal of anhydrite and compact dolomite; (4) virtual freedom from the anhydrite cements that occlude much porosity in other fields which are stratigraphic analogues of Yates; (5) unusual structural prominence, which favourably affected diagenetic development of the reservoir and made the field a focus for large volumes of migrating primary and secondary oil; (6) early reservoir pressures considerably above the minimum required to cause wells to flow to the surface, probably related to pressures in a tributary regional aquifer

La craie, roche carbonate poreuse, et son karst, 1991, Rodet, J.
Chalk and its karst - Chalk is a calcareous rock liable to karstification. That is demonstrated by the work which researchers and planners have been carrying out for a century and half. However, to state that all chalks are the sites of karstic drainage is unfortunate. Chalk turns out to be a more or less porous, more or less marly, more or less calcareous rock. This great variety of forms of drainage can show, going from one extreme (omnipresent porosity) to another (exclusively karstic drainage), passing on way through all the variants permitted by the blending of physico-hydrological qualities.

IMPACT OF PAST SEDIMENT ECOLOGY ON ROCK FRACTURATION AND DISTRIBUTION OF CURRENT ECOSYSTEMS (JURA, FRANCE), 1991, Gaiffe M, Bruckert S,
Differences in the fracture type of limestone rocks have resulted in the formation of several main plant soil ecosystems in the montane and subalpine zones of the Jura (800-1 700 m). The sites were on stable landscape with slope < 5%. Locations were chosen to reflect the variation in physical properties of the bedrock and lithic contact. The rock fractures (densities and size), the shape and size of the fragments and the hydraulic conductivities were described and analyzed to characterize the 3 main bedrocks in the area studied (table 1): 1), lapiaz, ie, large rock fragments separated from each other by wide fractures (figs 1-2), 'broken' rocks traversed by numerous fine fractures (fig 2-3), paving-stones crossed by infrequent narrow fractures (fig 3). The effects of rock fracturing on vegetation (table II) and soil formation were significant in reference to porosity and permeability relationships (figs 6-7). Under similar precipitation, meteoric waters flow through the soil and porosity is relative to fracture systems (figs 4, 5). The weathering of cobbles in the soil profiles and along the lithic contacts maintains different soil solution Ca levels and is an important variable in soil and ecosystem formation (table III). Regarding the regional orogenic phases and the tectonic origin of the fractures, we postulate that the different types of fracturation originated from the different chemical and mineralogic composition of the rocks. Significant differences exist in both the calcite and dolomite content, in the insoluble residue content (table IV) and in the percentage of organic matter of the carbonate-free residues (table V, fig 8). The results indicate that the differences in rock composition arose early at about the period of sedimentation. The origin of the differentiation might be due to the sedimentation conditions and environment (fig 9). It is concluded that the present-day plant soil ecosystems may be related to the marine sediment environments of the Jurassic period (fig 10)

EVOLUTION OF QUATERNARY DURICRUSTS IN KARINGA CREEK DRAINAGE SYSTEM, CENTRAL AUSTRALIAN GROUNDWATER DISCHARGE ZONE, 1991, Arakel Av,
Quaternary calcrete, silcrete and gypcrete duricrusts in Karinga Creek drainage system, central Australia, contain abundant late-stage diagnetic features. These indicate repeated episodes of dissolution, precipitation and mobilization of duricrust components in the landscape, following the initial development of the duricrust mantle. 'Mature' duricrust profiles incorporate assemblages of diagnostic textural features and fabrics that clearly indicate the extent of karstification during the past 27 000 years. Diagenetic features in the duricrusts permit recognition of the stages involved in vadose modifications of compositional, textural and morphological features and, hence, assessment of the impact of karst dissolution, precipitation and mobilization of duricrust components under prevailing environmental conditions. At landscape level, the continued development of secondary porosity-permeability zones in topographically elevated areas, and maintenance of effective topographic gradients for soil creep are considered essential for redistribution of duricrust components and lateral and vertical extension of karst features within the Quaternary duricrust mantle. Although developing over a comparatively short span of time, late-stage modification of the Quaternary duricrusts has important implications for evolution of Quaternary landscapes and distribution of groundwater discharge-recharge patterns. Accordingly, differential dissolution and reprecipitation within the duricrust profiles have progressively given way to development of karst solution pipes and cavities, with the latter now acting as effective conduits for recharge of local aquifers in the region

LATE-STAGE DOLOMITIZATION OF THE LOWER ORDOVICIAN ELLENBURGER GROUP, WEST TEXAS, 1991, Kupecz J. A. , Land L. S. ,
Petrography of the Lower Ordovician Ellenburger Group, both in deeply-buried subsurface cores and in outcrops which have never been deeply buried, documents five generations of dolomite, three generations of microquartz chert, and one generation of megaquartz. Regional periods of karstification serve to subdivide the dolomite into 'early-stage', which predates pre-Middle Ordovician karstification, and 'late-stage', which postdates pre-Middle Ordovician karstification and predates pre-Permian karstification. Approximately 10% of the dolomite in the Ellenburger Group is 'late-stage'. The earliest generation of late-stage dolomite, Dolomite-L1, is interpreted as a precursor to regional Dolomite-L2. L1 has been replaced by L2 and has similar trace element, O, C, and Sr isotopic signatures, and similar cathodoluminescence and backscattered electron images. It is possible to differentiate L1 from L2 only where cross-cutting relationships with chert are observed. Replacement Dolomite-L2 is associated with the grainstone, subarkose, and mixed carbonate-siliciclastic facies, and with karst breccias. The distribution of L2 is related to porosity and permeability which focused the flow of reactive fluids within the Ellenburger. Fluid inclusion data from megaquartz, interpreted to be cogenetic with Dolomite-L2, yield a mean temperature of homogenization of 85 6-degrees-C. On the basis of temperature/delta-O-18-water plots, temperatures of dolomitization ranged from approximately 60 to 110-degrees-C. Given estimates of maximum burial of the Ellenburger Group, these temperatures cannot be due to burial alone and are interpreted to be the result of migration of hot fluids into the area. A contour map of delta-O-18 from replacement Dolomite-L2 suggests a regional trend consistent with derivation of fluids from the Ouachita Orogenic Belt. The timing and direction of fluid migration associated with the Ouachita Orogeny are consistent with the timing and distribution of late-stage dolomite. Post-dating Dolomite-L2 are two generations of dolomite cement (C1 and C2) that are most abundant in karst breccias and are also associated with fractures, subarkoses and grainstones. Sr-87/Sr-86 data from L2, C1, and C2 suggest rock-buffering relative to Sr within Dolomite-L2 (and a retention of a Lower Ordovician seawater signature), while cements C1 and C2 became increasingly radiogenic. It is hypothesized that reactive fluids were Pennsylvanian pore fluids derived from basinal siliciclastics. The precipitating fluid evolved relative to Sr-87/Sr-86 from an initial Pennsylvanian seawater signature to radiogenic values; this evolution is due to increasing temperature and a concomitant evolution in pore-water geochemistry in the dominantly siliciclastic Pennsylvanian section. A possible source of Mg for late-stage dolomite is interpreted to be from the dissolution of early-stage dolomite by reactive basinal fluids

DOLOMITE-ROCK TEXTURES AND SECONDARY POROSITY DEVELOPMENT IN ELLENBURGER GROUP CARBONATES (LOWER ORDOVICIAN), WEST TEXAS AND SOUTHEASTERN NEW-MEXICO, 1991, Amthor Je, Friedman Gm,
Pervasive early- to late-stage dolomitization of Lower Ordovician Ellenburger Group carbonates in the deep Permian Basin of west Texas and southeastern New Mexico is recorded in core samples having present-day burial depths of 1.5-7.0 km. Seven dolomite-rock textures are recognized and classified according to crystal-size distribution and crystal-boundary shape. Unimodal and polymodal planar-s (subhedral) mosaic dolomite is the most widespread type, and it replaced allochems and matrix or occurs as void-filling cement. Planar-e (euhedral) dolomite crystals line pore spaces and/or fractures, or form mosaics of medium to coarse euhedral crystals. This kind of occurrence relates to significant intercrystalline porosity. Non-planar-a (anhedral) dolomite replaced a precursor limestone/dolostone only in zones that are characterized by original high porosity and permeability. Non-planar dolomite cement (saddle dolomite) is the latest generation and is responsible for occlusion of fractures and pore space. Dolomitization is closely associated with the development of secondary porosity; dolomitization pre-and post-dates dissolution and corrosion and no secondary porosity generation is present in the associated limestones. The most common porosity types are non-fabric selective moldic and vuggy porosity and intercrystalline porosity. Up to 12% effective porosity is recorded in the deep (6477 m) Delaware basin. These porous zones are characterized by late-diagenetic coarse-crystalline dolomite, whereas the non-porous intervals are composed of dense mosaics of early-diagenetic dolomites. The distribution of dolomite rock textures indicates that porous zones were preserved as limestone until late in the diagenetic history, and were then subjected to late-stage dolomitization in a deep burial environment, resulting in coarse-crystalline porous dolomites. In addition to karst horizons at the top of the Ellenburger Group, exploration for Ellenburger Group reservoirs should consider the presence of such porous zones within other Ellenburger Group dolomites

Symposium Abstract: Acid sulphate reaction and the generation of porosity in the Lincolnshire limestone aquifer, 1992, Moncaster S. J. , Bottrell S. H.

EXPLORATION AND DEVELOPMENT OF GROUND-WATER FROM THE STONE FOREST KARST AQUIFERS OF SOUTH CHINA, 1992, Huntoon P. W. ,
Stone forest aquifers are the most widely exploited sources for ground water in the vast south China karst belt. These aquifers occupy a thin epikarst zone that has been infilled with clastic sediments. The aquifers are characterized by large lateral permeabilities and small reservoir capacities owing to their thinness. The carbonate rocks which comprise the framework for the aquifers are usually buried under the karst plains and large karst depressions where development is desired. The stone forest aquifer exploration procedure must first locate saturated zones. Second, those parts of the saturated zone having the greatest dissolution porosity must be identified because the infilled dissolution voids contain the water. The best indicators of saturation include the combination of low topography and the presence of active karst features such as springs, karst windows (natural openings exposing the water table), and live surface streams. These elements are readily observed on intermediate scale (1:20,000) aerial photography. The depth and degree of carbonate dissolution porosity is a function of several geologic and hydrologic factors including carbonate rock type, carbonate purity, fracture density, specific discharge, age of the circulation system, etc. These variables cannot be measured directly because the carbonate rocks are usually buried under a thin mantle of clastic sediments. However, if it is recognized that the ground-water system has already exploited the most favorable geology and that dissolution is an ongoing process, a simple indirect method can be used to identify the areas having the greatest porosity. The presence of karst depressions and recent sinkholes are indicative of the most intensely karstified and hydraulically active parts of the epikarst zone. Mapping of these surface features from stereo aerial photography is a simple geomorphology exercise that can be used to directly identify the most favorable well sites. Current well construction practices in the south China karst belt involve both dug and drilled wells. Dug wells are preferred in many locations owing to both cost-effectiveness associated with cheap labor and lack of available drilling equipment. The dug wells look and function identically to karst windows and thus conform to timeless water use traditions in the region

HYDROGEOLOGY OF GRAND CAYMAN, BRITISH-WEST-INDIES - A KARSTIC DOLOSTONE AQUIFER, 1992, Ng K. C. , Jones B. , Beswick R. ,
On Grand Cayman, freshwater bodies present in the Bluff Formation are typically small and occur as thin lenses floating on top of dense saline water. Evaluation of the water resource potential of these freshwater lenses is difficult because of their variable hydrological conditions, complex paleohydrogeology and aquifer heterogeneity. Secondary porosity created by preferential dissolution of aragonitic fossil components is common. Open fissures and joints developed under tectonic stress and karst development associated with sea-level fluctuations are, however, the two most important causes of porosity and permeability in the aquifers on Grand Cayman. Fracture and karst porosity control the lens occurrence by: (1) acting as avenues for the intrusion of seawater or upward migration of saline water; (2) acting as recharge focal points; (3) enhancing hydrodynamic dispersion; (4) defining lens geometry; (5) facilitating carbonate dissolution along joints and fissures. A clear understanding of the hydrological and geological conditions is important in developing small lenses in a setting similar to that on Grand Cayman. This pragmatic approach can help identify the optimum location of the well field and avoid areas particularly susceptible to saline water intrusion

STABLE ISOTOPIC COMPOSITION OF METEORIC CALCITES - EVIDENCE FOR EARLY MISSISSIPPIAN CLIMATE-CHANGE IN THE MISSION CANYON FORMATION, MONTANA, 1993, Smith T. M. , Dorobek S. L. ,
The Lower Mississippian Mission Canyon Formation of central to southwestern Montana was deposited under dominantly semiarid to arid climatic conditions during Osagean to early Meramecian times. Following deposition, a pronounced climatic shift to more humid conditions occurred during middle Meramecian times. This climatic change is indicated by extensive, post-depositional karst fabrics and in the stable isotopic composition of early, meteoric calcite cements and diagenetically altered sediments. Early meteoric calcite cement in Mission Canyon limestones is generally nonluminescent and fills intergranular and fenestral porosity. Petrographic data indicate that this cement formed during intermittent subaerial exposure of the Mission Canyon platform during Osagean times. This initial generation of meteoric calcite cement has deltaO-18 values from -8.1 to -2.6 parts per thousand PDB. These data, and the oxygen isotopic values from nonluminescent skeletal grains and micrite in host limestone indicate that Osagean meteoric water may have had deltaO-18 values as low as -6.0 parts per thousand SMOW. A second generation of petrographically similar, but isotopically distinct, calcite cement fills biomolds and porosity within solution-collapse breccias in the Mission Canyon Formation. This cement generation postdates earlier nonluminescent Osagean calcite cement and is volumetrically most abundant near the top of the Mission Canyon Formation. DeltaO-18 values from these cements and from nonluminescent lime mudstone clasts and matrix in solution collapse breccias range from -13.8 to -8.2 parts per thousand PDB. These data indicate that Meramecian meteoric water may have had deltaO-18 values as low as - 12.0 parts per thousand. However, a higher-temperature burial overprint on the deltaO-18 values of the calcite cement cannot be ruled out. The more positive deltaO-18 values of the Osagean calcite components probably indicate warm and arid conditions during short-term [10(4)(?) yr) subaerial exposure along intraformational sequence and parasequence boundaries. The more negative deltaO-18 values from Meramecian calcite components and the extensive karst associated with the post-Mission Canyon unconformity may have developed because of cooler and more humid climatic conditions and possible rain-out effects during middle Meramecian times. A dramatic shift towards cooler and more humid climatic conditions may be coincident with the onset of major continental glaciation in the Early Carboniferous. The post-Mission Canyon unconformity has been attributed to a major fall in sea level that may have glacio-eustatic origins. Growth of continental glaciers during a time of global cooling would have caused migration of polar fronts further toward the paleoequator. These polar fronts in turn, would have pushed moist, mid-latitude weather systems toward the paleoequator, resulting in cooler, more humid conditions in low-latitude settings during ''icehouse'' times

An extended double-porosity concept as a practical modelling approach for a karstified terrain, 1993, Teutsch G.

ASSOCIATION OF TEPEES AND PALEOKARST IN THE LADINIAN CALCARE-ROSSO (SOUTHERN ALPS, ITALY), 1994, Mutti M. ,
The Ladinian Calcare Rosso of the Southern Alps provides a rare opportunity to examine the temporal relationships between tepees and palaeokarst. This unit comprises peritidal strata pervasively deformed into tepees, repeatedly capped by palaeokarst surfaces mantled by terra rossa. Palaeokarsts, characterized by a regional distribution across the Southern Alps, occur at the base and at the top of the unit. Local palaeokarsts, confined to this part of the platform, occur within the Calcare Rosso and strongly affected depositional facies. Tepee deformation ranges from simple antiformal structures (peritidal tepecs) to composite breccias floating in synsedimentary cements and internal sediments (senile tepees). Peritidal tepees commonly occur at the top of one peritidal cycle, in association with subaerial exposure at the cycle top, while senile tepees affect several peritidal cycles, and are always capped by a palaeokarst surface. Cements and internal sediments form up to 80% of the total rock volume of senile tepees. The paragenesis of senile tepees is extremely complex and records several, superimposed episodes of dissolution, cement precipitation (fibrous cements, laminated crusts, mega-rays) and deposition of internal sediments (marine sediment and terra rossa). Petrographical observations and stable isotope geochemistry indicate that cements associated with senile tepees precipitated in a coastal karstic environment under frequently changing conditions, ranging from marine to meteoric, and were altered soon after precipitation in the presence of either meteoric or mixed marine/meteoric waters. Stable isotope data for the cements and the host rock show the influence of meteoric water (average deltaO-18 = - 5.8 parts per thousand), while strontium isotopes (average Sr-87/Sr-86 = 0.707891) indicate that cements were precipitated and altered in the presence of marine Triassic waters. Field relationships, sedimentological associations and paragenetic sequences document that formation of senile tepees was coeval with karsting. Senile tepees formed in a karst-dominated environment in the presence of extensive meteoric water circulation, in contrast to previous interpretations that tepees formed in arid environments, under the influence of vadose diagenesis. Tepees initiated in a peritidal setting when subaerial exposure led to the formation of sheet cracks and up-buckling of strata. This porosity acted as a later conduit for either meteoric or mixed marine/meteoric fluids, when a karst system developed in association with prolonged subaerial exposure. Relative sea level variations, inducing changes in the water table, played a key role in exposing the peritidal cycles to marine, mixed marine/meteoric and meteoric diagenetic environments leading to the formation of senile tepees. The formation and preservation in the stratigraphic record of vertically stacked senile tepees implies that they formed during an overall period of transgression, punctuated by different orders of sea level variations, which allowed formation and later freezing of the cave infills

Results 1 to 15 of 250
You probably didn't submit anything to search for