Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That overthrust is upthrust fault with a very low angle of dip and a relatively large net displacement [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for prediction (Keyword) returned 70 results for the whole karstbase:
Showing 1 to 15 of 70
Some Implications of Competition for Cave Stream Communities., 1981, Culver David C.
Based on recent theoretical work by Robert May and Richard Levins, two hypotheses about time fluctuations in abundance of competing species were generated. Data for isopods and amphipods from four cave stream communities in Virginia and West Virginia were used to test the predictions. First, variance of total abundance should be less than the sum of the variances of individual species' abundances. In three of four communities studied, the prediction was confirmed, but none were statistically significant. Positive correlations among carrying capacities of competing species may explain the poor agreement with predictions. Second, the signs of 19 correlations and partial correlations of species abundances were predicted on the basis of relative magnitudes of direct and indirect effects of competition, and of these predictions, 16 were confirmed by the data, including 5 statistically significant ones. Most interesting was the finding that competitors can be positively correlated.

Towards the prediction of subsidence risk upon the Chalk outcrop, 1983, Edmonds Cn,
Surface karst landforms such as solution pipes, swallow holes and dolines are well developed on the Cretaceous chalk outcrop in Britain. The local frequency of these solution features on the chalk can be as high as on any of the best developed karst areas on other British limestones. However, the overall frequency of solution features for major regions of the chalk outcrop is much lower. Solution pipes, swallow holes and dolines often represent an engineering hazard because of metastable conditions, which, if disturbed, can result in ground subsidence. The research described here is aimed at producing a model to predict areas of subsidence risk upon the chalk outcrop. Considerations for the prediction of subsidence risk are outlined with preliminary analysis for two areas

Prediction of Climatic Temperature Data for Karst Areas in the Central and Southern Tablelands of New South Wales, 1983, Halbert, Erik J. M.

The use of multiple regression analysis is shown to overcome current limitations in availability of climatic temperature data for caving sites in the Central and Southern Tablelands of New South Wales. The developed equations are used to calculate climatic data for Jenolan, Wellington, and Oberon which agree well with recorded data at these sites. The equations are also used to calculate data for six major caving areas in New South Wales, including the tourist areas Wombeyan and Yarrangobilly and frequently visited areas such as Bungonia and Wee Jasper.


Subsidence hazard prediction for limestone terrains, as applied to the English Cretaceous Chalk, 1987, Edmonds Cn, Green Cp, Higginbottom Ie,
Soluble carbonate rocks often pose a subsidence hazard to engineering and building works, due to the presence of either metastable natural solution features or artificial cavities. There is also an inherent danger to the public and lives have been lost because of unexpected ground collapses. Although site investigation techniques are becoming increasingly elaborate, the detection of hazardous ground conditions associated with limestones is frequently difficult and unreliable. Remedial measures to solve subsidence problems following foundation failure are expensive. It would be advantageous if areas liable to subsidence could be identified in a cost-effective manner in advance of planning and ground investigation. Hazard mapping could then be used by planners when checking the geotechnical suitability of a proposed development or by engineering geologists/geotechnical engineers to design the type of ground investigation best suited to the nature and scale of the potential hazard. Recent research focussed on the English Chalk outcrop has led to the development of two new models to predict the subsidence hazard for both natural solution features and artificial cavities. The predictive models can be used to map the hazard at any given chalkland locality, as a cost-effective precursor to ground investigation. The models, although created for the Chalk outcrop, have important implications for all types of limestone terrain. The basis of the predictive modelling procedure is an analysis of the spatial distribution of nearly 1600 natural solution features, and more than 850 artificial cavity locations, identified from a wide varietyy of sources, including a special appeal organized by CIRIA. A range of geological, hydrogeological and geomorphological factors are evaluated to identify significant relationships with subsidence. These factors are ranked, numerically weighted and incorporated into two quantitative subsidence hazard model formulae. The models can be applied to perform hazard mapping

Karst hydrogeology of the Canadian Rocky Mountains, PhD Thesis, 1991, Worthington, Stephen Richard Hurst

An analysis of the discharge and hydrochemical variations of contrasting springs at Crowsnest Pass showed they were part of a vertical hierarchy in the aquifer, in which underflow and overflow components play a dominant role. It was found that karst springs at Crowsnest Pass and elsewhere show a range between two end members. Thermal springs have long, deep flow paths, with high sulphate concentrations, low discharge variance and low flow velocities. Overflow springs have local shallow flow paths, low sulphate, high discharge variance, and high flow velocities. Intermediate between these end members are underflow springs; in the Rocky Mountains these are mostly aggraded, and give the sustained winter flow and high sulphate concentrations found in major rivers. It was found that underflow or overflow behaviour is able to explain most of the contrasts found between karst springs in discharge and sulphate concentrations. Conversely, differences in bicarbonate concentration are principally due to the ratio of allogenic to autogenic recharge to the aquifer. Hydraulic analysis showed that gradients decrease in the downstream direction, and are typically 0.0001-0.05 at maximum discharges, that friction factors vary by a factor of $>$1000, and that most active conduits have closed-channel flow and are in dynamic equilibrium with sediment supply. The analysis of the hydrological data from Crowsnest Pass and elsewhere has led to the development of a new conceptual model for groundwater flow in karst, in which the Hagen-Poiseuille flow net conditions the aquifer for conduit development, and determines where the conduits will be. The model explains why most conduits are in dynamic equilibrium with sediment supply, why temperate karst springs are mostly vauclusian, what the mean time for speleogenesis is, how $>$98% of the solution of limestone is in the surficial zone, and why there are karstic hot springs in the Rocky Mountains and elsewhere. The model enables predictions to be made of sink to resurgence flow velocities, of conduit depth below the water table, of the ratio of beds to joints used by conduits, of the spacing between cave tiers, and of the depth of vauclusian springs. This new understanding of how karstic aquifers develop and function gives a powerful predictive ability to karst hydrogeology.


GEOCHEMICALLY CONTROLLED CALCITE PRECIPITATION BY CO2 OUTGASSING - FIELD-MEASUREMENTS OF PRECIPITATION RATES IN COMPARISON TO THEORETICAL PREDICTIONS, 1992, Dreybrodt W, Buhmann D, Michaelis J, Usdowski E,

AN EXPERT-SYSTEM FOR PREDICTION OF KARST DISASTER IN EXCAVATION OF TUNNELS OR UNDERGROUND STRUCTURES THROUGH A CARBONATE ROCK AREA, 1993, Zhang Q. , Tian S. F. , Mo Y. B. , Dong X. Z. , Hao S. Y. ,
Karst may become a very serious disaster in tunneling if there is no prediction or warning. We developed an expert system, based on expertise of Chinese experts in karst science and in underground engineering, for prediction of karst debacles when a tunnel is excavated through a carbonate rock area. This system has been demonstrated and affirmed by domain experts

USING GROUND-PENETRATING RADAR TO INVESTIGATE A SUBSURFACE KARST LANDSCAPE IN NORTH-CENTRAL FLORIDA, 1994, Collins Me, Cum M, Hanninen P,
Doline formation in karst areas has been a major concern in Florida. Recently, there has been increased interest in investigating the subsurface conditions that influences preferential flow in these karst landscapes. This information is necessary to improve transport and fate models of contaminants. In addition, there is interest in knowing if the formation and expansion of dolines can be predicted by studying subsurface conditions and flow patterns. The soils on the Newberry Limestone Plain are typically sandy above a thin or absent phosphatic, clayey Hawthorne Formation. Underlying this formation is the Crystal River Limestone. A field survey with ground-penetrating radar (GPR) was conducted on the Newberry Limestone Plain at a site with recently formed dolines. The objectives were (i) to investigate the subsurface materials, (ii) to ascertain subsurface landscape variability, (iii) to relate the subsurface landscapes to subsurface flow patterns, and (iv) to predict doline growth and formation in the study area. The results of this study indicated that the subsurface features; presence of clay over limestone, location of solution pipes and paleo-dolines are variable. In general, the subsurface landscape does not follow the surface topography. Subsurface solute movement can be estimated in these landscapes assuming the clay layer that drapes the limestone acts as an aquatarde. Thus, subsurface modeling of flow at the study site is improved. Locations of paleo-dolines and solution pipes were obvious in the radar data. Predictions, though, of future doline formation and growth at the study site were difficult with GPR. Fracture patterns, e.g. dips in the limestone, can be evaluated and weak zones where paleo-dolines have formed can be identified. This study would not have been possible without the use of the GPR. The radar was able to obtain continuous information on 16% of the site to a depth of 3 m. A highly detailed soil survey using conventional methods would have provided only 0.8% coverage of the site

ESTIMATION OF PREFERENTIAL MOVEMENT OF BROMIDE TRACER UNDER FIELD CONDITIONS, 1994, Jabro J. D. , Lotse E. G. , Fritton D. D. , Baker D. E. ,
Leaching of agricultural chemicals from the root and vadose zones into groundwater is an important environmental concern. To procure a better understanding of the movement and transport of agricultural chemicals through the soil profile, a field research study was conducted to estimate bromide leaching losses under saturated conditions where preferential flow is occurring. The field data were then used to evaluate the LEACHM model. Eighteen double-ring infiltrometers were used to apply a pulse (100 mm depth) of bromide tracer on two previously saturated soils located in a karst region of southeastern Pennsylvania. Internal drainage over the next seven days resulted in nearly 51 % of the applied Br- being leached to a depth below 0.80 m. The LEACHM model was used to simulate the amount of bromide leached in each infiltrometer. The model predicted, accurately, an average of 46% of the applied Br- leached below the 0.80 m depth. Mcan values of bromide concentration in the soil profile were predicted within two standard deviations of the measured mean for all depths except for the 0.20-0.40 m depth increment where the model overpredicted the bromide concentration. The model predictions of Br- leached were tested against field measurements using several statistical tests. The LEACHM model performed adequately under preferential flow conditions, perhaps because the infiltration rate at each site was used as a model input. This, actually, is some measure of the macropore flow process and suggests that simple models such as LEACHM can be used in the field, as long as a distribution of infiltration rates is used as an input

HYDROLOGIC RESPONSE OF A KARST WATERSHED, 1994, Felton Gk,
A ground water catchment was instrumented as a karst hydrology and water quality laboratory to develop long-term flow and water quality data. This catchment located in Woodford and Jessamine Counties in the Inner Bluegrass, Central Kentucky encompasses approximately 1620 ha, 40 water wells, over 400 sinkholes, 2 karst windows, and 1 sinking stream. The land uses consist of approximately 59% beef pasture, horse farm, and golf course; 16% row crops; 6% orchard; 13%forest; and 6% residential. The instrumentation consisted of a recording rain gage, an H-flume, a water stage recorder, and an automated water sampler. Flow data for 312 days were analyzed, and a peak flow rate prediction equation, specific to this catchment, was developed Recession curves were analyzed and found to be of two distinct mathematical forms, log curves and exponential curves. Prediction equations were good for the log-type recession curve and fair for the exponential-type recession curve. For the exponential recessions, the peak flow rate was found to be bimodally distributed The recession events were classified as either high flow or low flow, with the point of separation at 113 L/s. It was hypothesized that the flow system was controlled by pipe flow above 113 L/s and by open channel flow below 113 L/s. Subsequent analysis resulted in adequate prediction for the low flow events. Explained variation associated with the high flow events was low and attributed to storage in the karst system that was not incorporated into the predictor equation

Using ground-penetrating radar to investigate a subsurface karst landscape in north-central Florida, 1994, Collins M. E. , Cure M. , Hanninen P.

Doline formation in karst areas has been a major concern in Florida. Recently, there has been increased interest in investigating the subsurface conditions that influences preferential flow in these karst landscapes. This information is necessary to improve transport and fate models of contaminants. In addition, there is interest in knowing if the formation and expansion of dolines can be predicted by studying subsurface conditions and flow patterns. The soils on the Newberry Limestone Plain are typically sandy above a thin or absent phosphatic, clayey Hawthorne Formation. Underlying this formation is the Crystal River Limestone. A field survey with ground-penetrating radar (GPR) was conducted on the Newberry Limestone Plain at a site with recently formed dolines. The objectives were (i) to investigate the subsurface materials, (ii) to ascertain subsurface landscape variability, (iii) to relate the subsurface landscapes to subsurface flow patterns, and (iv) to predict doline growth and formation in the study area. The results of this study indicated that the subsurface features; presence of clay over limestone, location of solution pipes and paleo-dolines are variable. In general, the subsurface landscape does not follow the surface topography. Subsurface solute movement can be estimated in these landscapes assuming the clay layer that drapes the limestone acts as an aquatarde. Thus, subsurface modeling of flow at the study site is improved. Locations of paleo-dolines and solution pipes were obvious in the radar data. Predictions, though, of future doline formation and growth at the study site were difficult with GPR. Fracture patterns, e.g. dips in the limestone, can be evaluated and weak zones where paleo-dolines have formed can be identified. This study would not have been possible without the use of the GPR. The radar was able to obtain continuous information on 16% of the site to a depth of 3 m. A highly detailed soil survey using conventional methods would have provided only 0.8% coverage of the site


Recent flowstone growth rates: field measurements and comparison to theoretical results, 1995, Baker A. , Smart Pl. ,
The model of calcite precipitation kinetics of D. Buhmann and W. Dreybrodt, based on the rate laws of L.N. Plummer et al., is used to predict cave flowstone growth rates. These theoretically modelled growth rates are compared to actual growth rates of recent samples found in cave and mine sites in southwest England. A good agreement is found between modelled and actual growth rates within the 95% confidence level of the determinations, although in general modelled growth rates overestimate actual growth rate by between 2.4 and 4.7 times. Several reasons for this overestimation are discussed, including uncertainties arising from the experimental data of L.N. Plummer et al., seasonal shut-off of water flow onto the flowstones and significant variations in the growth rate determining parameters during the period of flowstone growth. For one flowstone an underestimation of growth rate is observed and is explained by the presence of rimstone pools which pond water on the sample surface

HYDRODYNAMIC CONTROL OF INORGANIC CALCITE PRECIPITATION IN HUANGLONG RAVINE, CHINA - FIELD-MEASUREMENTS AND THEORETICAL PREDICTION OF DEPOSITION RATES, 1995, Liu Z. H. , Svensson U. , Dreybrodt W. , Yuan D. X. , Buhmann D. ,
Hydrochemical and hydrodynamical investigations are presented to explain tufa deposition rates along the flow path of the Huanglong Ravine, located in northwestern Sichuan province, China, on an altitude of about 3400 m asl. Due to outgassing of CO2 the mainly spring-fed stream exhibits, along a valley of 3.5 km, calcite precipitation rates up to a few mm/year. We have carried out in situ experiments to measure calcite deposition rates at rimstone dams, inside of pools and in the stream-bed. Simultaneously, the downstream evolution of water chemistry was investigated at nine locations with respect to Ca2 Mg2, Na, Cl-, SO42-, and alkalinity. Temperature, pH, and conductivity were measured in situ, while total hardness, Ca-T, and alkalinity have been determined immediately after sampling, performing standard titration methods. The water turned out to be of an almost pure Ca-Mg-HCO3 type. The degassing of CO2 causes high supersaturation with respect to calcite and due to calcite precipitation the Ca2 concentration decreases from 6 . 10(-3) mole/l upstream down to 2.5 . 10(-3) mole/l at the lower course. Small rectangular shaped tablets of pure marble were mounted under different flow regimes, i.e., at the dam sites with fast water flow as well as inside pools with still water. After the substrate samples had stayed in the water for a period of a few days, the deposition rates were measured by weight increase, up to several tens of milligrams. Although there were no differences in hydrochemistry, deposition rates in fast flowing water were higher by as much as a factor of four compared to still water, indicating a strong influence of hydrodynamics. While upstream rates amounted up to 5 mm/year, lower rates of about 1 mm/year were observed downstream. Inspection of the marble substrate surfaces by EDAX and SEM (scanning electron microscope) revealed authigeneously grown calcite crystals of about 10 mu m. Their shape and habit are indicative of a chemically controlled inorganic origin. By applying a mass transfer model for calcite precipitation taking into account the reaction rates at the surface given by Plummer et al. (1978), slow conversion of CO2 into H and HCO3-, and diffusional mass transport across a diffusion boundary layer, we have calculated the deposition rates from the hydrochemistry of the corresponding locations. The calculated rates agree within a factor of two with the experimental results. Our findings confirm former conclusions with respect to fast flow conditions: reasonable rates of calcite precipitation can be estimated in reducing the PWP-rate calculated from the chemical composition of the water by a factor of about ten, thus correcting for the influence of the diffusion boundary layer

Underground drainage study of Sorbas gypsum basin, 1996, Pledel, Brunomartinez

The kinetics of the reaction CO2?>H? as one of the rate limiting steps for the dissolution of calcite in the system H2O-CO2-CaCO3, 1996, Dreybrodt W, Lauckner J, Liu Zh, Svensson U, Buhmann D,
Dissolution of CaCO3 in the system H2O-CO2-CaCO3 is controlled by three rate-determining processes: The kinetics of dissolution at the mineral surface, mass transport by diffusion, and the slow kinetics of the reaction H2O CO2 = H HCO3-. A theoretical model of Buhmann and Dreybrodt (1985a,b) predicts that the dissolution rates depend critically on the ratio V/A of the volume V of the solution and the surface area A of the reacting mineral. Experimental data verifying these predictions for stagnant solutions have been already obtained in the range 0.01 cm < V/A < 0.1 cm. We have performed measurements of dissolution rates in a porous medium of sized CaCO3 particles for V/A in the range of 2 . 10(-4) cm and 0.01 cm in a system closed with respect to CO2 using solutions pre-equilibrated with an initial partial pressure of CO2 of 1 . 10(-2) and 5 . 10(-2) atm. The results are in satisfactory agreement with the theoretical predictions and show that especially for V/A < 10(-3) cm dissolution is controlled entirely by conversion of CO2 into H and HCO3-, whereas in the range from 10(-3) cm up to 10(-1) cm both CO2-conversion and molecular diffusion are the rate controlling processes. This is corroborated by performing dissolution experiments using 0.6 mu molar solutions of carbonic anhydrase, an enzyme enhancing the CO2-conversion rates by several orders of magnitude. In these experiments CO2 conversion is no longer rate limiting and consequently the dissolution rates of CaCO3 increase significantly. We have also performed batch experiments at various initial pressures of CO2 by stirring sized calcite particles in a solution with V/A = 0.6 cm and V/A = 0.038 cm. These data also clearly show the influence of CO2-conversion on the dissolution rates. In all experiments inhibition of dissolution occurs close to equilibrium. Therefore, the theoretical predictions are valid for concentrations c less than or equal to 0.9 c(eq). Summarising we find good agreement between experimental and theoretically predicted dissolution rates. Therefore, the theoretical model can be used with confidence to find reliable dissolution rates from the chemical composition of a solution for a wide field of geological applications

Results 1 to 15 of 70
You probably didn't submit anything to search for