Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That interstitial medium is spaces between grains of sand or fine gravel filled with water which contains phreatobia [25].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
Engineering challenges in Karst, Stevanović, Zoran; Milanović, Petar
See all featured articles
Featured articles from other Geoscience Journals
Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy), Dimuccio, L.A.; Rodrigues, N.; Larocca, F.; Pratas, J.; Amado, A.M.; Batista de Carvalho, L.A.
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
See all featured articles from other geoscience journals

Search in KarstBase

Your search for reefs (Keyword) returned 26 results for the whole karstbase:
Showing 1 to 15 of 26
Reef configurations: cause and effect, 1974, Purdy E. G.

Drowned dolines - the blue holes of the Pompey Reefs, Great Barrier Reef, 1979, Backshall D. G. , J. Barnett P. J. , Davies D. C. Et Al.

Shallow-marine carbonate facies and facies models, 1985, Tucker M. E. ,
Shallow-marine carbonate sediments occur in three settings: platforms, shelves and ramps. The facies patterns and sequences in these settings are distinctive. However, one type of setting can develop into another through sedimentational or tectonic processes and, in the geologic record, intermediate cases are common. Five major depositional mechanisms affect carbonate sediments, giving predictable facies sequences: (1) tidal flat progradation, (2) shelf-marginal reef progradation, (3) vertical accretion of subtidal carbonates, (4) migration of carbonate sand bodies and (5) resedimentation processes, especially shoreface sands to deeper subtidal environments by storms and off-shelf transport by slumps, debris flows and turbidity currents. Carbonate platforms are regionally extensive environments of shallow subtidal and intertidal sedimentation. Storms are the most important source of energy, moving sediment on to shoreline tidal flats, reworking shoreface sands and transporting them into areas of deeper water. Progradation of tidal flats, producing shallowing upward sequences is the dominant depositional process on platforms. Two basic types of tidal flat are distinguished: an active type, typical of shorelines of low sediment production rates and high meteorologic tidal range, characterized by tidal channels which rework the flats producing grainstone lenses and beds and shell lags, and prominent storm layers; and a passive type in areas of lower meteorologic tidal range and higher sediment production rates, characterized by an absence of channel deposits, much fenestral and cryptalgal peloidal micrite, few storm layers and possibly extensive mixing-zone dolomite. Fluctuations in sea-level strongly affect platform sedimentation. Shelves are relatively narrow depositional environments, characterized by a distinct break of slope at the shelf margin. Reefs and carbonate sand bodies typify the turbulent shelf margin and give way to a shelf lagoon, bordered by tidal flats and/or a beach-barrier system along the shoreline. Marginal reef complexes show a fore-reef--reef core--back reef facies arrangement, where there were organisms capable of producing a solid framework. There have been seven such phases through the Phanerozoic. Reef mounds, equivalent to modern patch reefs, are very variable in faunal composition, size and shape. They occur at shelf margins, but also within shelf lagoons and on platforms and ramps. Four stages of development can be distinguished, from little-solid reef with much skeletal debris through to an evolved reef-lagoon-debris halo system. Shelf-marginal carbonate sand bodies consist of skeletal and oolite grainstones. Windward, leeward and tide-dominated shelf margins have different types of carbonate sand body, giving distinctive facies models. Ramps slope gently from intertidal to basinal depths, with no major change in gradient. Nearshore, inner ramp carbonate sands of beach-barrier-tidal delta complexes and subtidal shoals give way to muddy sands and sandy muds of the outer ramp. The major depositional processes are seaward progradation of the inner sand belt and storm transport of shoreface sand out to the deep ramp. Most shallow-marine carbonate facies are represented throughout the geologic record. However, variations do occur and these are most clearly seen in shelf-margin facies, through the evolutionary pattern of frame-building organisms causing the erratic development of barrier reef complexes. There have been significant variations in the mineralogy of carbonate skeletons, ooids and syn-sedimentary cements through time, reflecting fluctuations in seawater chemistry, but the effect of these is largely in terms of diagenesis rather than facies

Barbuda--an emerging reef and lagoon complex on the edge of the Lesser Antilles island are, 1985, Brasier M, Donahue J,
The Pliocene to Holocene limestones of Barbuda have formed on a wide, shallow, outlying bank of the Lesser Antilles island arc, some 50 km east of the older axis of the Limestone Caribbees and 100 km east of the newer axis of the active Volcanic Caribbees. Contrasts with neighbouring islands of similar size include the lack of exposed igneous basement or mid-Tertiary sediments, the dominance of younger flat-lying carbonates, and the greater frequency of earthquake shocks. The history of emergence of the island has been studied through aerial reconnaissance, mapping, logging, hand coring, facies and microfacies analysis. These show a pattern of progressively falling high sea level stands (from more than 50 m down to the present level) on which are superimposed at least three major phases of subaerial exposure, when sea levels were close to, or below, their present level. This sequence can be summarized as follows: 1, bank edge facies (early Pliocene Highlands Formation) deposited at not more than c. 50-100 m above the present sea level; 2, emergence with moderate upwarping in the north, associated with the Bat Hole subaerial phase forming widespread karst; 3, older Pleistocene transgression with fringing reefs and protected bays formed at l0 to l5 m high sea level stands (Beazer Formation); 4, Marl Pits subaerial phase with widespread karst and soil formation; 5, late Pleistocene transgression up to m high stand with fringing and barrier reefs, protected backreefs and bays (Codrington Formation Phase I); 6, gradual regression resulting in emergence of reefs, enclosure of lagoons, and progradation of beach ridges at heights falling from c. 5 m to below present sea level (Codrington Phase II); 7, Castle Bay subaerial phase produced karst, caliche and coastal dunes that built eastwards to below present sea level; and 8, Holocene transgression producing the present mosaic, with reefs, lagoons and prograding beach ridge complexes, with the present sea level reached before c. 4085 years BP. The evidence suggests that slight uplift took place in the north of the island after early Pliocene times. Subsequent shoreline fluctuations are consistent with glacio-eustatic changes in sea level, indicating that the island has not experienced significant uplift during the Quaternary

Niveaux marins, chronologie isotopique et karstification en rpublique dominicaine, 1993, Diaz_del_olmo F. , Camara_artigas R.
The study of marine levels and the karstification of coral reefs on the Santo Domingo coast emphasizes qua-ternary dynamics linked to climatic variations and eustatic oscillations. The evolution proposed here includes the last 400 000 years (U/Th limit) and shows the importance of stages 1, 5 and 7 (interglacial stages) in the layout of coral reefs. As far as karstifiction is concerned, the differences observed between ancient and more recent times can be accounted for by a tendancy to the drying out of the intertropical morphoclimatic system.

SPELEOGENESIS IN AEOLIAN CALCARENITE - A CASE-STUDY IN WESTERN VICTORIA, 1994, White S. ,
Most studies of karst landscapes and their processes have been concerned with consolidated, often well-jointed limestones. There are particular problems involved in the study of karst procesess in softer, less-compact limestones such as chalk, coral reefs, and aeolian calcarenite. Previous studies in aeolian calcarenite indicated these problems and a scheme was developed of speleogenesis in aeolian calcarenite. A study of karst processes in aeolian calcarenite at Bats Ridge in western Victoria has developed this scheme further. The karst features and processes at Bats Ridge are an integral part of the landscape of a mid-Pleistocene calcarenite dune system. The resolution of problems of the rapid subaerial speleogenesis in the area is achieved by the synthesis of the known karst features of the ridge and the geology and geomorphology of the area. Karst development on this aeolianite ridge depends on lithological conditions as well as the availability of aggressive water capable of solution. The diagenesis of the calcarenite is occurring now and must have been occurring by the mid-Pleistocene. This simultaneous lithification of the carbonate dunes into aeolian calcarenite rock and the development of solutional karst features in the dunes is the characteristic feature of the speleogenesis in this area. It is the formation of a hardened kankar layer (cap rock) in the dunes of sufficient compressive and tensile strength to support cavities, which is the result of these interrelated factors, that has strongly determined the formation of the karst features

MESSINIAN (LATE MIOCENE) KARST ON GRAND-CAYMAN, BRITISH-WEST-INDIES - AN EXAMPLE OF AN EROSIONAL SEQUENCE BOUNDARY, 1994, Jones B. , Hunter I. G. ,
The Cayman Unconformity, which separates the Pedro Castle Formation (Pliocene) from the underlying Cayman Formation (Miocene), is a sequence boundary that developed during the Messinian, when sea level was at a lowstand due to glaciation in the Southern Hemisphere. By the end of the Messinian, Grand Cayman was an atoll-like island that had an elevated peripheral rim that was up to 41 m above the central depression. The Cayman Formation contains paleocaves and paleosinkholes that were linked to the Cayman Unconformity. The topography on the Cayman Unconformity is attributed to erosional processes, because (1) there is no evidence of carbonates that formed by constructional processes (i.e., reefs, dunes) in the elevated peripheral rim, and (2) there is ample evidence of dissolutional features in the Cayman Formation. The topography developed on the interior of Grand Cayman during the Messinian was uneven. A deep, basin-like depression, with its base as much as 50 m below the peripheral rim, formed on the western part of the island. By comparison, the floor of the depression on the eastern part of the island was 20-30 m higher. The difference in the topography, which is a reflection of the amount of bedrock dissolution, suggests that the effective rainfall was highest over the western part of the island. The relief on the Cayman Unconformity and associated structures shows that base level during the Messinian karst development was at least 41 m below present-day sea level. This is also provides an estimate of the Messinian lowstand position because the base level in oceanic karst settings is usually controlled by sea level

The Lower Triassic Montney Formation, west-central Alberta, 1997, Davies Gr, Moslow Tf, Sherwin Md,
The Lower Triassic Montney Formation was deposited in a west-facing, arcuate extensional basin, designated the Peace River Basin, on the northwestern margin of the Supercontinent Pangea, centred at about 30 degrees N paleolatitude. At least seasonally arid climatic conditions, dominance of northeast trade winds, minimum fluvial influx, offshore coastal upwelling, and north to south longshore sediment transport affected Montney sedimentation. Paleostructure, particularly highs over underlying Upper Devonian Leduc reefs and lows associated with graben trends in the Peace River area, strongly influenced Montney depositional and downslope mass-wasting processes. A wide range of depositional environments in the Montney is recorded by facies ranging from mid to upper shoreface sandstones, to middle and lower shoreface HCS sandstones and coarse siltstones, to finely laminated lower shoreface sand and offshore siltstones. and to turbidites. Dolomitized coquinal facies occur at seven stratigraphic horizons in the Montney. Some coquinas are capped by karst breccias and coarse-grained aeolian deflation lag sand residues indicating subaerial exposure. The Montney has been divided into three informal members that have been dated by palynology and compared with global Early Triassic sequences. The subdivisions are: the Lower member, of Griesbachian to Dienerian age, correlated with a third-order cycle; the Coquinal Dolomite Middle member, of mixed Dienerian and Smithian ages; and the Upper member, of Smithian to Spathian age, correlative with two, shorter-duration third-order cycles. A forced regressive wedge systems tract model is adopted for deposition of the Coquinal Dolomite Middle member and for turbidites in the Valhalla-La Glace area of west-central Alberta. With this model, coquinas and turbidites accumulated during falling base level to lowstand, with a basal surface of forced regression at the base of the coquina and a sequence boundary at the top of the coquinal member. This is supported by the evidence for subaerial exposure and maximum lowstand at the top of the coquina. Very limited grain size distribution in the Montney, dominantly siltstone to very fine-grained sandstone, but often very well sorted, is interpreted to reflect an aeolian influence on sediment source and transport, High detrital feldspar and detrital dolomite in the Montney are consistent with (but not proof of) aeolian source from an arid interior, as is high detrital mica content in finer size grades. Extensive and often pervasive dolomitization, and early anhydrite cementation within the Montney, are also consistent with an arid climatic imprint. As new exploratory drilling continues to reveal the wide range of facies in the Montney, it adds to both the complexity and potential of this relatively unique formation in western Canada

Holocene development of three isolated carbonate platforms, Belize, central America, 1998, Gischler E. , Hudson J. H. ,
Locally operating factors such as topography of the reef basement and exposure to waves and currents rather than regionally effective factors such as the post-glacial sea level rise in the western Atlantic explain the different Holocene developments of the three isolated carbonate platforms Glovers Reef, Lighthouse Reef, and Turneffe Islands offshore Belize. A series of NNE-striking tilted fault-blocks at the passive continental margin forms the deep basement of the Belize reefs. Glovers and Lighthouse Reefs are located on the same fault-block, while Turneffe Islands is situated west of Lighthouse Reef on an adjacent fault-block. The three platforms are surrounded by deep water and have surface-breaking reef rims. Significant differences exist between platform interiors. Glovers Reef has only 0.2% of land and an 18 m deep, well-circulated lagoon with over 800 patch reefs. Lighthouse Reef has 3% of land and a well-circulated lagoon area. Patch reefs are aligned along a NNE-striking trend that separates a shallow western (3 m) and a deeper eastern (8 m) lagoon. Turneffe Islands has 22% of land that is mainly red mangrove. Interior lagoons are up to 8 m deep and most have restricted circulation and no patch reefs. Surface sediments are rich in organic matter. In contrast, the northernmost part of Turneffe Islands has no extensive mangrove development and the well-circulated lagoon area has abundant patch reefs. Holocene reef development was investigated by means of 9 rotary core holes that all reached Pleistocene reef limestones, and by radiometric dating of corals. Maximal Holocene reef thickness reaches 11.7 m on Glovers Reef, 7.9 m on Lighthouse Reef, and 3.8 m on Turneffe Islands. Factors that controlled Holocene reef development include the following. (1) Holocene sea level. The margin of Glovers Reef was flooded by the rising Holocene sea ca. 7500 YBP, that of Lighthouse Reef ca. 6500 YBP, and that of Turneffe Islands between 5400 and 4750 YBP. All investigated Holocene reefs belong to the keep-up type, even though the three platforms were flooded successively and, hence, the reefs had to keep pace with different rates of sea level rise. (2) Pre-Holocene topography. Pleistocene elevation and relief are different on the three platforms. This is the consequence of both tectonics and karst. Different elevations caused successive reef initiation and they also resulted in differences in lagoon depths. Variations in Pleistocene topography also explain the different facies distribution patterns on the windward platforms that are located on the same fault-block. On Lighthouse Reef tectonic structures are clearly visible such as the linear patch reef trend that is aligned along a Pleistocene fault. On Glovers Reef only short linear trends of patch reefs can be detected because the Pleistocene tectonic structures are presumably masked by the higher Holocene thickness. The lower Pleistocene elevation on Glovers Reef is probably a consequence of both a southward tectonic tilt, and stronger karstification towards the south related to higher rainfall. (3) Exposure to waves and currents. Glovers Reef, Lighthouse Reef, and the northernmost part of Turneffe Islands receive the maximum wave force as they are open to the Caribbean Sea. Adjacent lagoons are well-circulated and have luxuriant patch reef growth and no extensive mangrove development. By contrast, most of Turneffe Islands is protected from the open Caribbean Sea by Lighthouse Reef to the east and is only exposed to reduced wave forces, allowing extensive mangrove growth in these protected areas. (C) 1998 Elsevier Science B.V

The role of high-energy events (hurricanes and/or tsunamis) in the sedimentation, diagenesis and karst initiation of tropical shallow water carbonate platforms and atolls, 1998, Jan F. G. B. L. ,
Karst morphology appears early, even during carbonate sediment deposition. Examples from modern to 125-ka-old sub-, inter- and supratidal sediments are given from the Bahamas (Atlantic Ocean) and from Tuamotuan atolls (southeastern Pacific Ocean), with mineralogical and hydrological analyses. Karstification is favoured by the aragonitic composition of bioclasts coming from the shallow marine bio-factory. Lithification by aragonite cements appears as a rim around carbonate deposits and dissolution and non-cementation start at the same time on modern supratidal deposits (Andros micrite or atoll coral rudite) and provoke the formation of a central depression on small or large carbonate platforms. In fact, this early solution of the centre of platforms is closely related to the location of each of the studied examples on hurricane tracks. High-energy events, such as hurricanes and tsunamis, affect sediment transport but hurricanes also affect diagenesis as a result of the enormous volume of freshwater carried and discharged along their paths. This couple, lithification- solution, is localised at sea level and accompanies sea-level fluctuations along the eustatic curve. Because of the precise location of hurricane action all around the Earth, early karstification by aragonite solution, cementation and supratidal carbonate sediment accumulations thigh-energy trails) act together on all the platforms and atolls located inside the Tropics (23 degrees 27') between roughly 5 degrees-10 degrees and 25 degrees on both hemispheres. However, early karstification acts alone on shallow carbonate platforms including atolls along the equatorial belt between 5 degrees-10 degrees N and 5 degrees-10 degrees S. These early steps of karstification are linked to the ocean-atmosphere interface due to the bathymetrical position of shallow carbonate platforms, including atolls. They lead to complex karstified emerged platforms, called high carbonate islands, where carbonate diagenesis, together with the development of bauxite- and/or a phosphate-rich cover and phreatic lens, will occur. (C) 1998 Elsevier Science B.V. All rights reserved

Les glaciers de marbre de Patagonie, Chili : un karst subpolaire ocanique de la zone australe, 1999, Maire Richard, Ultima_esperanza_team
The karst areas of Chilean Patagonia have remained virtually unknown until now because of their remoteness and very inhospitable climate. They are mainly located in two islands, Diego de Almagro and Madre de Dios, between latitude 52 and 50 South, with a subpolar and stormy climate "tempered" by heavy oceanic precipitations (7 m/ year). In Diego de Almagro the Permian and Carboniferous limestones and dolomites have been transformed into marbles with lamprophyre dikes through contact metamorphism. Situated in the outer part of the archipelagoes, these long and narrow outcrops (0.5-2km wide) are located between volcano-sedimentary formations of Upper Paleozoic (West) and the Mesozoic Patagonian batholit (East). The corallian paleoreefs are part of an accretionary prism of the Gondwana paleo-continent. The surficial and underground karstification is one of the most spectacular ones in the world. The Karren (lapies) caused by the heavy rains can be 1-4 meter(s) wide and several hundred meters long for the solution runnels. Moreover, we can often observe solution karrens both due to rain and wind direction: flat karren (horizontal laminar flow), cascading ripples (sloping laminar flow) and profiled solution forms. The surficial solution velocity is about 3 mm/50 years (from old painting traces near the quarry of Guarello, Madre de Dios); and the lamprophyres dikes (Diego de Almagro) put in relief through corrosion indicate a 40-60 cm surficial solution since the melting of pleistocene glaciers.

Carbonate platform systems: components and interactions -- an introduction, 2000, Insalaco Enzo, Skelton Peter, Palmer Tim J. ,
Carbonate platforms are open systems with natural boundaries in space and time. Across their spatial boundaries there are fluxes of energy (e.g. light, chemical energy in compounds, and kinetic energy in currents and mass flows) and matter (e.g. nutrients, dissolved gases such as CO2, and sediment -- especially, of course, carbonates). Internally, these fluxes are regulated by myriads of interactions and feedbacks (Masse 1995), and the residue is consigned to the geological record. The most distinctive aspect of carbonate platforms is the predominant role of organisms in producing, processing and/or trapping carbonate sediment, even in Precambrian examples. Because of evolutionary changes in this strong biotic input, it is harder to generalize about carbonate platforms than about most other sedimentary systems. Evolution has altered both the constructive and destructive effects of platform-dwelling organisms on carbonate fabrics, with profound consequences for facies development. Moreover, changing patterns in the provision of accommodation space (e.g. between greenhouse and icehouse climatic regimes) have also left their stamp on facies geometries, in turn feeding back to the evolution of the platform biotas. Hence simplistic analogies between modern and ancient platforms may give rise to misleading interpretations of what the latter were like and how they formed. Although a number of carbonate platform and reef specialists have warned of the dangers of such misplaced uniformitarianism (e.g. Braithwaite 1973; Gili et al. 1995; Wood 1999), it remains depressingly commonplace in the literature on ancient carbonate platforms. The endless quest in the literature for an allpurpose definition of reefs' ... This 250-word extract was created in the absence of an abstract

Last interglacial reef growth beneath Belize barrier and isolated platform reefs, 2000, Gischler Eberhard, Lomando Anthony J. , Hudson J. Harold, Holmes Charles W. ,
We report the first radiometric dates (thermal-ionization mass spectrometry) from late Pleistocene reef deposits from offshore Belize, the location of the largest modern reef complex in the Atlantic Ocean. The results presented here can be used to explain significant differences in bathymetry, sedimentary facies, and reef development of this major reef area, and the results are significant because they contribute to the knowledge of the regional geology of the eastern Yucatan. The previously held concept of a neotectonically stable eastern Yucatan is challenged. The dates indicate that Pleistocene reefs and shallow-water limestones, which form the basement of modern reefs in the area, accumulated ca. 125-130 ka. Significant differences in elevation of the samples relative to present sea level (>10 m) have several possible causes. Differential subsidence along a series of continental margin fault blocks in combination with variation in karstification are probably the prime causes. Differential subsidence is presumably related to initial extension and later left-lateral movements along the adjacent active boundary between the North American and Caribbean plates. Increasing dissolution toward the south during Pleistocene sea-level lowstands is probably a consequence of higher precipitation rates in mountainous southern Belize

Diagenetic History of Pipe Creek Jr. Reef, Silurian, North-Central Indiana, U.S.A, 2000, Simo J. A. , Lehmann Patrick J. ,
Calcite cements in the Silurian (Ludlovian) Pipe Creek Jr. Reef, north-central Indiana, are compositionally zoned with characteristic minor-element concentrations and stable-isotope signatures, and were precipitated in different diagenetic environments. Superposition and crosscutting relationships allow us to group cement zones and to relate them to the sequence stratigraphic evolution of the reef. Pipe Creek Jr. Reef grew in normal marine waters, with the reef top high (greater than 50 m) above the platform floor. Flank facies are volumetrically important and are preserved largely as limestone, in contrast to most dolomitized Silurian reefs in the midcontinent. Syndepositional marine cements fill primary porosity and synsedimentary fractures and are interlayered with marine internal sediment. Now low-magnesium calcite, their isotopic compositions are similar to those of depositional grains and cements estimated to have precipitated from Ludlovian sea waters. Depositional porosity was reduced by 75% by the precipitation of these syndepositional cements, which stabilized the steeply dipping flank slope. Postdepositional, clear calcite cements are interpreted as shallow-phreatic and burial cements on the basis of their relationship to periods of karstification and fracturing. Shallow-phreatic cements, with concentric cathodoluminescent (CL) zonation, precipitated in primary pores and are postdated by fractures and caves filled with Middle Devonian sandstone. CL zonal boundaries are sharp, and some, near a major stratigraphic unconformity, show evidence of dissolution. The volumetric abundance of the individual CL zones varies in the reef, indicating a complex superposition of waters of varying chemistry and rock-water interaction that are probably related to relative sea-level changes. This important aspect of the reef stratigraphy is recorded only by the diagenetic succession, because evidence of earlier sea-level changes is removed by a major later regional unconformity. Burial cements are the youngest diagenetic feature recognized, and they rest conformably or unconformably over older cements. They exhibit both concentric CL zonation and sectoral zoning, they are ferroan to nonferroan, and they contain thin sulfide zones along growth-band boundaries. Their isotopic compositions do not overlap with shallow-phreatic or marine cement values. Degraded oil postdates burial cements, and is composed of the same sterane class as the Devonian-age Antrim Shale, the probable source rock. This source contrasts with that of reef reservoirs in the Michigan Basin, where Silurian strata are commonly the hydrocarbon source

Diagenesis and porosity evolution of the Upper Silurian-lowermost Devonian West Point reef limestone, eastern Gaspe Belt, Quebec Appalachians, 2001, Bourque Pa, Savard Mm, Chi G, Dansereau P,
Diagenetic analysis based on cathodoluminescence petrography, cement stratigraphy, carbon and oxygen stable isotope geochemistry, and fluid inclusion microthermometry was used to reconstruct the porosity history and evaluate the reservoir potential of the Upper Silurian-Lower Devonian West Point limestone in the eastern part of the Gaspe Belt. The West Point limestone was investigated in two areas: 1) In the Chaleurs Bay Synclinorium, the limestone diagenesis of the lower and middle complexes of the Silurian West Point Formation was affected by repeated subaerial exposure related to late Ludlovian third-order eustatic low-stands, which coincided with the Salinic block tilting that produced the Salinic unconformity. The Anse McInnis Member (middle bank complex) underwent freshwater dissolution, and mixed marine and freshwater cementation during deposition. Concurrently, the underlying Anse a la Barbe and Gros Morbe members (lower mound and reef complex) experienced dissolution by fresh water percolating throughout the limestone succession. Despite this early development of karst porosity, subsequent meteoric-influenced cementation rapidly occluded all remaining pore space in the Gros Morbe, Anse a la Barbe, and Anse McInnis limestones. In contrast, the overlying Colline Daniel Member limestone (upper reef complex) does not show the influence of any freshwater diagenesis. Occlusion of its primary porosity occurred during progressive burial and was completed under a maximum burial depth of 1.2 kin. 2) In the Northern Outcrop Belt, the diagenesis of the Devonian pinnacle reefs of the West Point Formation followed a progressive burial trend. The primary pores of the reef limestone were not completely occluded before the reefs were buried at a significant depth (in some cases, to 6 km). Therefore, hydrocarbon migration in subsurface buildups before primary porosity occlusion might have created reservoirs. Moreover, the presence of gaseous hydrocarbons in Acadian-related veins attests to a hydrocarbon source in the area

Results 1 to 15 of 26
You probably didn't submit anything to search for