Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That hall is in a cave, a lofty chamber which is much longer than it is wide [10]. see also gallery.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
Engineering challenges in Karst, Stevanović, Zoran; Milanović, Petar
See all featured articles
Featured articles from other Geoscience Journals
Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy), Dimuccio, L.A.; Rodrigues, N.; Larocca, F.; Pratas, J.; Amado, A.M.; Batista de Carvalho, L.A.
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
See all featured articles from other geoscience journals

Search in KarstBase

Your search for river water (Keyword) returned 34 results for the whole karstbase:
Showing 1 to 15 of 34
Observations of karst hydrology in the Waga Valley, Southern Highlands District, Papua, New Guinea, 1975, Jacobson G. , Michael Bourke R.

In the neighbourhood of a possible dam site in the Waga Valley, Southern Highlands District, Papua New Guinea, there is little surface drainage apart from the Waga River itself. However, many nearby features - streamsinks, springs, estavelles, dry valleys, dolines and caves - are indicative of the marked development of karst drainage. Loss of river water by entry underground is not balanced by the known local outflows, and larger resurgences must be sought further afield to complete an understanding of the karst hydrology relevant for the engineering proposal.


The dynamics of population in the Isopod Proasellus slavus ssp.n. and the larvae of Chironomids in the hyporheic water of the river Drava with regard to pollution., 1976, Lattingerpenko Romana, Mestrov Milan, Tavcar Vlatka
If we sum up the data and observations derived from our researches on the Drava river, we conclude after consideration of surface water fauna and after comparison of chemical parameters that it influences the hyporheic water of a rough gravel-sandy alluvium more than 2 m deep, while in the compact sandy substratum it has less influence. The next conclusion is that the horizontal and vertical distribution of Proasellus slavus ssp.n. in the alluvium of the Drava river, depends upon the granulation of substratum, with reference so the largeness of interstices; that the populations vary in density and structure according to the nature of water which irrigates these alluviums; and finally upon the quantity of detritus which this water contains. Concerning the influence of the sewage waters the effect of a sudden action of very polluted water is not known but it is certain that the increasing of decaying material to the alfa-meso saprobial level of the river water does not threaten either the existence or the development of the populations of Proasellus slavus ssp.n.

Hydrogeological investigations into discharge of salt-containing water from a stream into an aquifer., 1976, Neuss Matthias
An aquifer in a horseshoe bend of the Weser river was investigated regarding the processes of the river water infiltration. The geology and geometry of the aquifer was ascertained by means of numerous borings. The hydraulic situation before and after infiltration was determined by water table maps. The intrusion of a salt-freshwater lens could be reconstructed from the beginning of infiltration until ten years later by means of previous results of chemical analysis. By new chemical analysis it was proved that river water infiltrates into the aquifer. Additionally it was established that the relatively high concentration of chloride is reduced during the passage of the groundwater both by mixing with recharged groundwater and by adsorption of the ground. Furthermore temperature measurements in the groundwater at selected stations confirm qualitatively the river water infiltration into the polder.

Ecological investigations of the influence of a polluted river on surrounding interstitial underground waters., 1978, Lattingerpenko Romana, Mestrov Milan
Because of the fundamental biological investigations and also of the practical importance, the authors investigated interstitial subterranean water (hyporheic) near a polluted river Sava in the plain where the underground waters are considered as potable. With the comparison of the physical, chemical, bacteriological, saprobiological and faunistic characteristics of the river and its hyporheic zone in different seasons their mutual relation is detected. The results show the influence of polluted river water on the hyporheic water within the river bed to at least 2 m depth.

Le karst du compartiment oriental de la basse Cvenne carbonate (Gard), 1988, Martin, Ph.
The karst of the Eastern compartment of the carbonated Lower Cvenne (Gard) - This text summarises 10 years of exploration and study of the eastern karst of the Gardon river basin above Als. Karst concerns 5 facies: Trias, Hettangian-Sinemurian (rich in limonite and pyrites), Upper Bajocian - Lower Bathonian (rich in pyrites), Upper Jurassic and Barremian. This lager is broken into more or less rolling panels, which have collapsed towards the Als rift. Tridimensional systems draining this karst are considered to be evolving toward better performance. It is a remarkable case of natural organisation. Structure is deduced from function. A morphologic approach explains the systems history. Three of the four identified karstic systems are simple. They are partial a natural models of the fourth: the Fonts karstic system. We describe on detail some elements of its structure (caves for ex.) and of its functio-ning (hydrodynamic, hydrochemistry). We show through pumping that the Cauvel river feeds the Fonts spring and the Carabiole spring. The effect of geological and geomorphologic characteristics of the spring site on water output is mentioned. We describe the realisation of a pumping station driving subterranean Cauvel river water a 100m back and point out the usefulness of speleological information.

Micro-Fungi of the Hendrie River Water Cave, Mackinac County, Michigan, 1991, Volz Paul A. , Yao Ji Ping

Dissolution of Gypsum from field observations., 1996, Aksem Sergey, Calaforra Jos Maria, Cucchi Franco, Finocchiaro Furio, Forti Paolo, Klimchouk Alexander
The paper reports the results of field measurements of gypsum dissolution in various countries (Ukraine, Spain, Italy and others) and in different environments (river waters, precipitation, vadose zone, unconfined aquifer, perched cave lakes, ephemeral streams in caves, confined aquifer, cave air).

Geochemistry and water dynamics: Application to short time-scale flood phenomena in a small Mediterranean catchment .1. Alkalis, alkali-earths and Sr isotopes, 1997, Benothman D, Luck Jm, Tournoud Mg,
We report major, trace elements and Sr isotope data for water samples taken regularly during a four-day-long September flood of a Mediterranean river, the Vene (Herault, S. France). The objective is to combine all these data into a dynamic model that describes the origin(s) and movements of waters and their loads. This river drains the runoff from a small, mainly carbonate, partly karstified watershed with Miocene and Jurassic lithologies. The watershed is also impacted by both agricultural and urban activities. Both the dissolved and the particulate loads were analyzed. Concentrations of the dissolved components show major remobilization of almost all elements during the first few hours of the flood (water treatment plants and aerosol scavenging), followed by a sharp concentration decrease. Some major species return to their previous summer values (Ca, HCO3) while others reach low 'background' levels (Na, K, Cl, SO4). Some trace elements (Rb, Sr, Cs) show similar behaviour but (Ba) appears somewhat unaffected. Trace element concentrations and ratios define two main periods (three in the suspended particulate matter). Ratios do not allow distinguishing between the three main sources for the dissolved load in the first period (Miocene, Jurassic, water treatment plants), but clearly show the Jurassic karst influence later on. The Sr-87/Sr-86 Of the suspended particulate matter is more variable and more radiogenic than in the dissolved phase. Variations in concentration ratios and Sr isotope composition in particulates indicate the large and variable contribution of Miocene silicates with some carbonate. However, there is a need for another component with [Rb]/[Sr] higher than bedrocks, internal or external to the watershed, possibly due to differential erosion. Dissolved Ca and Mg fluxes during the flood were calculated at 0.26 ton and 0.029 ton/km(2), respectively. Even though the carbonate nature of the watershed restricts variability in Sr isotope composition in the dissolved load, we distinguish several endmembers: seawater(approximate to marine rain), Miocene marls, Jurassic limestones, water treatment plants (and possibly another attributable to fertilizers). Combined with major and trace element variational Sr isotope fluctuations indicate time-varying proportions of different water endmembers at the outflow and suggest a general dynamic model. Based on PCA (principal component analysis), a 3D representation allows to visualize the geochemical evolution of the Vene waters. In particular, Sr isotopes clearly indicate that the inflow of karstic waters during the flood was not continuous but occurred as a series of marked oscillations between flowing waters with chemical signature of Miocene lithologies and increasing flushes of deeper waters that interacted with Jurassic lithologies. (C) 1997 Elsevier Science B.V

River water intrusion to the unconfined Floridan Aquifer, 1998, Kincaid Todd R. ,
Rapid infiltration of river water into unconfined parts of the Floridan aquifer represents a significant component of subsequent ground-water discharge in regions where the aquifer is dissected by surface streams. A two-year investigation of the Devil's Ear cave system, an extensive saturated conduit network in the Floridan aquifer which underlies a 1.5-km reach of the Santa Fe River in north-central Florida, revealed that there is an appreciable and rapid exchange of water between the river and the underlying Floridan aquifer. Natural tracers Radon-222 ( 222 Rn) and delta 18 O were used to quantify these exchanges. Cave diving was employed to collect 50 water samples which were analyzed for tracer content and to observe water clarity conditions within the saturated karst conduits as far as 1.2 km from the cave entrance. 222 Rn concentrations measured in the cave system revealed three distinct zones where river water is rapidly intruded into the Floridan aquifer. A two-component mixing model was used to quantify the intruded river water that was found to account for as much as 62 percent of the discharge at Devil's Ear spring. Observations of diminished water clarity in the cave system following large precipitation events in the highland provinces of the Santa Fe River basin indicate that river water intrusion to the aquifer can occur in as little as one or two days. The results of this investigation imply that, in regions such as the western Santa Fe River basin, there can be no clear distinction between ground and surface waters and intruded river water provides a significant vehicle for contamination of the unconfined Floridan aquifer

Changes in the isotopic and chemical composition of ground water resulting from a recharge pulse from a sinking stream, 1998, Katz B. G. , Catches J. S. , Bullen T. D. , Michel R. L. ,
The Little River, an ephemeral stream that drains a watershed of approximately ss km(2) in northern Florida, disappears into a series of sinkholes along the Cody Scarp and flows directly into the carbonate Upper Floridan aquifer, the source of water supply in northern Florida. The changes in the geochemistry of ground water caused by a major recharge pulse from the sinking stream were investigated using chemical and isotopic tracers and mass-balance modeling techniques, Nine monitoring wells were installed open to the uppermost part of the aquifer in areas near the sinks where numerous subterranean karst solution features were identified using ground penetrating radar. During high-flow conditions in the Little River, the chemistry of water in some of the monitoring wells changed, reflecting the mixing of river water with ground water. Rapid recharge of river water into some parts of the aquifer during high-flow conditions was indicated by enriched values of delta O-18 and delta deuterium (-1.67 to -3.17 per mil and -9.2 to -15.6 per mil, respectively), elevated concentrations of tannic acid, higher (more radiogenic) Sr-87/Sr-86 ratios, and lower concentrations of Rn-222, silica, and alkalinity compared to low-how conditions. The proportion of river water that mixed with ground water ranged from 0.10 to 0.67 based on binary mixing models using the tracers O-18, deuterium, tannic acid, silica, Rn-222, and Sr-87/Sr-86. On the basis of mass-balance modeling during steady-state how conditions, the dominant processes controlling carbon cycling in ground water are the dissolution of calcite and dolomite in aquifer material, and aerobic degradation of organic matter. (C) 1998 Elsevier Science B.V. All rights reserved

Oxidation of organic matter in a karstic hydrologic unit supplied through stream sinks (Loiret, France), 1998, Alberic P, Lepiller M,
The aim of this paper is to appraise the ability of the oxidation of riverine organic matter in the control of limestone dissolution, in a karst network. Biogeochemical processes during infiltration of river water into an alluvial aquifer have already been described for an average flow velocity of 4-5 m d(-1) (Jacobs, L. A., von Gunten, H. R., Keil, R, and Kuslys, M. (1988) Geochemical changes along a river-groundwater infiltration flow path: Glattfelden, Switzerland. Geochim. Cosmochim. Acta 52, 2693-2706; Von Gunten, H. R., Karametaxas, G., Krahenbuhl, U., Kuslys, M., Giovanoli R., Hoehn E. and Keil R. (1991) Seasonal biogeochemical cycles in riverborne groundwater. Geochim. Cosmochim. Acta 55, 3597-3609; Bourg, A. C. M. and Bertin, C. (1993) Quantitative appraisal of biogeochemical chemical processes during the infiltration of river water into an alluvial aquifer. Environ. Sci. Technol. 27, 661-666). Karstic drainage networks, such as in the River Loire-Val d'Orleans hydrologic system (Fig. 1), make possible flow velocities up to 200 m h(-1 a) and provide convenient access to different water samples several tens of km apart, at both extremities of the hydrologic unit (Chery, J.-L. (1983) Etude hydrochimique d'un aquifere karstique alimente par perte de cours d'eau (la Loire): Le systeme des calcaires de Beauce sous le val d'Orleans. These, Universite d'Orleans; Livrozet, E. (1984) Influence des apports de la Loire sur la qualite bacteriologique et chimique de l'aquifere karstique du val d'Orleans. These, Universite d'Orleans). Recharge of the karstic aquifer occurs principally from influent waters from stream sinks, either through coarse alluvial deposits or directly from outcrops of the regional limestone bedrock (Calcaires de Beauce). Recharge by seepage waters From the local catchment basin is small (Zunino, C., Bonnet, M. and Lelong, F. (1980) Le Val d'Orleans: un exemple d'aquifere a alimentation laterale. C. R. somm. Soc. Geol. Fr. 5, 195-199; Gonzalez R. (1992) Etude de l'organisation et evaluation des echanges entre la Loire moyenne et l'aquifere des calcaires de Beauce. These, Universite d'Orleans) and negligible in summer. This karstic hydrologic: system is the largest in France in terms of flow (tens to hundreds of m(3)/s) and provides the main water resource of the city of Orleans. Chemical compositions of influent waters (River Loire) and effluent waters (spring of the river Loiret) were compared, in particular during floods in summer 1992 and 1993 (Figs 2-4). Variation of chloride in the River Loire during the stream rise can be used as an environmental tracer of the underground flow (Fig. 2). Short transit times of about 3 days are detectable (Fig, 2) which are consistent with earlier estimations obtained with chemical tracers (Ref. in Chery, J.-L. (1983) These, Universite d'Orleans). Depending on the hydrological regime of the river, organic carbon discharge ranges between 3-7 and 2-13 mg/l for dissolved and particulate matter respectively (Fig. 3). Eutrophic characteristics and high algal biomasses are found in the River Loire during low water (Lair, N. and Sargos, D. (1993) A 10 year study at four sites of the middle course of the River Loire. I - Patterns of change in hydrological, physical and chemical variables in relation to algal biomass. Hudroecol. Appl. 5, 1-27) together with more organic carbon rich suspended particulate matter than during floods (30-40 C-org % dry weight versus 5-10%). Amounts of total organic carbon and dissolved oxygen (Fig. 3) dramatically decrease during the underground transport, whereas conversely, dissolved calcium, alkalinity and inorganic carbon increase (Fig. 4). Anoxia of outflows map start in April. Dissolution of calcium carbonates along the influent path outweighs closed system calcite equilibrium of inflow river waters (Table 3). The impact of organic matter oxidation on calcite dissolution may be traced by variations of alkalinity and total carbonates in water. Following, Jacobs, L. A., von Gunten, H. R., Keil, R. and Kuslys, M. (1988) Geochemical changes along a river-groundwater infiltration flow path: Glattfelden, Switzerland. Geochim. Cosmochim. Acta 52, 2693-2706), results are shown graphically (Fig. 5). Extent of reactions is controlled by the consumption of dissolved O-2 and nitrate for organic matter oxidation and by the release of Ca2 for calcite dissolution (Table 2). The karstic network is considered to behave like a biological reactor not exchanging with the atmosphere, with steady inhabitant microbial communities (Mariotti A., Landreau A, and Simon B. (1988) N-15 isotope biogeochemisrry and natural denitrification process in groundwater: Application to the chalk aquifer of northern France. Geochim. Cosmochim. Acta 52, 1869-1878; Gounot, A.-M. (1991) Ecologie microbienne des eaux ei des sediments souterrains. Hydrogeologie, 239-248). Thus, energy requirements only are considered, not carbon assimilation. Moreover, there is no necessity to invoke any delay for nitrification enhancement, as observed elsewhere, after waste water discharge into the river (Chesterikoff, A., Garban, B., Billen, G. and Poulin, M. (1992) Inorganic nitrogen dynamics in the River Seine downstream from Paris (France). Biogeochem. 17, 147-164). Main microbial processes are assumed to be aerobic respiration, nitrification and denitrification. Reactions with iron and manganese, real but not quantitatively important, were neglected. Sulphate reduction and methane formation, certainly not active, were not considered. Denitrification, which is suggested by low nitrate and ammonium concentrations and anoxia in the outflow, is known to be rapid enough to be achieved in a short time (Dupain, S. (1992) Denitrification biologique heterotrophe appliquee au traitement des eaux d'alimentation: Conditions de fonclionnement et mise au point d'un procede. These, Universite Claude Bernard, Lyon). Reaction are somewhat arbitrary but conform to general acceptance (Morel, M. M. and Hering, J. G. (1993) Principles and Applications of Aquatic Chemistry. Wiley, New York). Anaerobic ammonium oxidation (Mulder A., van de Graaf, A. A., Robertson, L: A. and Kuenen, J. G. (1995) Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor. FEMS Microbiol. Ecol. 16, 177-184). although possible, was not considered. In fact, C/N ratio of the reactive organic matter has only mild repercussions on the results; i.e. in the same range as the analytical errors for alkalinity and total carbonates. The objective was simply to roughly confront characteristics of outflowing waters and the calculation. Respective roles of aerobes and denitrifiers, for instance, are not certain. Several periods during low water or floods were selected with various ranges for calcium dissolution or nitrate and oxygen concentrations. The result is that in most cases simulation and data are in reasonable accordance (Fig. 5). Amounts of organic matter in River Loire are generally sufficient to sustain the process (Table 3. Particulate organic matter is probably the most reactive. The balance of oxidation of organic matter indicates that about 65 mu g C-org/l.h are oxidized during the transport without much variation with the river regime or organic discharge. It is concluded that limestone dissolution is directly dependent on organic matter oxidation, but variation occurs (7-29 mg CuCO3/l) with the level of bases that can be neutralized in the River Loire water. (C) 1998 Elsevier Science Ltd. All rights reserved

Stable isotopes as natural tracers of the karst recharge to the tertiary clastic aquifers: a case study of southern part of Ljubljana marsh , 1998, Pezdič, Jož, E,

The main purpose of the research was to determine the recharge and storage of groundwater at the southern part of Ljubljana marsh where tertiary aquifers are filled mainly with karst water. Stable isotopes of hydrogen, oxygen and carbon in water or in dissolved species, as well as tritium content in water and precipitation were used as natural tracers to follow the recharge and discharge of surface streams and aquifers. Together with hydrogeological and other chemical evidence they provide useful information about water mass transport, storage, refilling of aquifers and mixing of groundwater. In the aquifers, springs and surface river water d18O varied from -9,65 to -8,82 š while dD has the range from -67,4 to -61,2 š. Tritium activities are measured from 1,6 to 13,4 T.U.. Long term averages (n = 13 years) for d18O (dD) in Ljubljana is -8,73 (-60,6) š and tritium content is 17,5 T.U.. The mean temperature in Ljubljana is 10,03ºC and average years precipitation amount is 1332 mm. Years 1992-93 have been characterised by low tritium content in precipitation (8,2 for 1992 and 10,6 for 1993) and so important for investigation. The average mean meteoric line for the last 14 years is defined as dD=8,188xd18O+10,66. Temperature correlation vs. oxygen is: d18O=0,254xt-10,78. The above database is discussed in order to evaluate thesis about karst influence on the recharge and storage of clastic sediment aquifers in the Iška delta sediment structure.


Geology and evolution of lakes in north-central Florida, 1999, Kindinger J. L. , Davis J. B. , Flocks J. G. ,
Fluid exchange between surficial waters and groundwater in karst environments, and the processes that control exchange, are of critical concern to water management districts and planners, High-resolution seismic data were collected from 30 lakes of north-central Florida. In each case study, lake structure and geomorphology were controlled by solution and/or mechanical processes. Processes that control lake development are twofold: (1) karstification or dissolution of the underlying limestone, and (2) the collapse, subsidence, or slumping of overburden to form sinkholes. Initial lake formation is directly related to the karst topography of the underlying host limestone. Case studies have shown that lakes can be divided by geomorphic types into progressive developmental phases: (1) active subsidence or collapse phase (young); (2) transitional phase (middle age); (3) baselevel phase (mature); and (4) polje (drowned prairie) - broad flat-bottom that have one or all phases of sinkhole. Using these criteria, Florida lakes can be classified by size, fill, subsurface features, and geomorphology

Hydrochemical evidence for mixing of river water and groundwater during high-flow conditions, lower Suwannee River basin, Florida, USA, 1999, Crandall Ca, Katz Bg, Hirten Jj,
Karstic aquifers are highly susceptible to rapid infiltration of river water, particularly during periods of high flow. Following a period of sustained rainfall in the Suwannee River basin, Florida, USA, the stage of the Suwannee River rose from 3.0 to 5.88 m above mean sea level in April 1996 and discharge peaked at 360 m(3)/s. During these high-now conditions, water from the Suwannee River migrated directly into the karstic Upper Floridan aquifer, the main source of water supply for the area. Changes in the chemical composition of groundwater were quantified using naturally occurring geochemical tracers and mass-balance modeling techniques. Mixing of river water with groundwater was indicated by a decrease in the concentrations of calcium, silica, and Rn-222; and by an increase in dissolved organic carbon (DOC), tannic acid, and chloride, compared to low-flow conditions in water from a nearby monitoring well, Wingate Sink, and Little River Springs. The proportion (fraction) of river water in groundwater ranged from 0.13 to 0.65 at Wingate Sink and from 0.5 to 0.99 at well W-17258, based on binary mixing models using various tracers. The effectiveness of a natural tracer in quantifying mixing of river water and groundwater was related to differences in tracer concentration of the two end members and how conservatively the tracer reacted in the mixed water. Solutes with similar concentrations in the two end-member waters (Na, Mg, K, Cl, SO4, SiO2) were not as effective tracers for quantifying mixing of river water and groundwater as those with larger differences in end-member concentrations (Ca, tannic acid, DOC, Rn-222, HCO3)

Temperature as a natural tracer of short residence times for groundwater in karst aquifers, 1999, Martin J. B. , Dean R. W.
Chemistry of karst waters is controlled by reactions with aquifer rocks, the extent of mixing between water sources, and variations in the composition of recharged waterThe extent of reactions and mixing may be determined uniquely if compositions of both recharged and discharged water are known, such as where sinking streams are linked to resurgent springs, and if residence time in the subsurface can be measuredSuch a linked system occurs along the Santa Fe River in north-central Florida, where the river flows underground for approximately 52 km as it crosses from confined to unconfined portions of the Floridan AquiferTemporal variations in temperature can be correlated between the river sink, the river rise, and Sweetwater Lake, a karst window approximately midway between the sink and riseDelays in the arrival time of temperature maxima and minima from the sink to Sweetwater Lake and from Sweetwater Lake to the Rise reflect the residence time of the river water in the subsurfaceResidence time correlates with the river stage and ranges from approximately 12 hours to more than four days at high and low stage, respectively between the river sink and SweetwaterLake, and from about six hours to nearly two days at high and low stage, respectively, between Sweetwater Lake and the river riseThese short residence times reflect minimum flow rates of between 13 and 9 km/day, indicating conduit flowKnowing the residence time at any stage allows sampling of water as it enters the aquifer, and then again as it dischargesChanges in the chemistry of water as it passes through the subsurface should reflect chemical reactions, mixing, or both

Results 1 to 15 of 34
You probably didn't submit anything to search for