Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That slump pit is a hollow in the clay fill of a cave floor caused by erosion beneath the fill [10].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
Engineering challenges in Karst, Stevanović, Zoran; Milanović, Petar
See all featured articles
Featured articles from other Geoscience Journals
Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy), Dimuccio, L.A.; Rodrigues, N.; Larocca, F.; Pratas, J.; Amado, A.M.; Batista de Carvalho, L.A.
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
See all featured articles from other geoscience journals

Search in KarstBase

Your search for sea-level rise (Keyword) returned 17 results for the whole karstbase:
Showing 1 to 15 of 17
Controversy over the great flood hypotheses in the Black Sea in light of geological, paleontological, and archaeological evidence, , Yankohombach Valentina, Gilbert Allan S. , Dolukhanov Pavel,
Legends describing a Great Flood are found in the narratives of several world religions, and the biblical account of Noah's Flood is the surviving heir to several versions of the ancient Mesopotamian Flood Myth. Recently, the story of the biblical deluge was connected to the Black Sea, together with the suggestion that the story's pre-Mesopotamian origins might be found in the Pontic basin [Ryan, W.B.F., Pitman, III, W.C., 1998. Noah's Flood: The New Scientific Discoveries About the Event That Changed History. Simon and Schuster, New York]. Based on the significance of this flood epic in the Judeo-Christian tradition, popular interest surged following publication of the idea.Currently, two Great Flood scenarios have been proposed for the Black Sea: (1) an Early Holocene event caused by catastrophic Mediterranean inflow at 7.2 ky BP (initial hypothesis of [Ryan et al., 1997. An abrupt drowning of the Black Sea shelf. Marine Geology 138, 119-126]) or 8.4 ky BP (modified hypothesis of [Ryan et al., 2003. Catastrophic flooding of the Black Sea. Annual Review of Earth and Planetary Science 31, 525-554.); and (2) a Late Pleistocene event brought on by Caspian influx between 16 and 13 ky BP [Chepalyga, A.L., 2003. Late glacial Great Flood in the Black Sea and Caspian Sea. GSA Annual Meeting and Exposition, 2-5 November 2003, Seattle, USA, p. 460]. Both hypotheses claim that the massive inundations of the Black Sea basin and ensuing large-scale environmental changes had a profound impact on prehistoric human societies of the surrounding areas, and both propose that the event formed the basis for the biblical Great Flood legend.This paper attempts to determine whether the preponderance of existing evidence sustains support for these Great Floods in the evolution of the Black Sea. Based upon established geological and paleontological data, it finds that the Late Pleistocene inundation was intense and substantial whereas the Early Holocene sea-level rise was not. Between 16 and 13 ky BP, the Late Neoeuxinian lake (the Late Pleistocene water body in the Pontic basin pre-dating the Black Sea) increased rapidly from ~-14 to -50 m (below the present level of the Black Sea), then rose gradually to ~-20 m by about 11 ky BP. At 11-10 ky BP (the Younger Dryas), it dropped to ~-50 m. When the Black Sea re-connected with the Sea of Marmara at about 9.5 ky BP, inflowing Mediterranean water increased the Black Sea level very gradually up to ~-20 m, and in so doing, it raised the salinity of the basin and brought in the first wave of Mediterranean immigrants. These data indicate no major drawdown of the Black Sea after the Younger Dryas, and they do not provide evidence for any catastrophic flooding of the Black Sea in the Early Holocene.In addition, available archaeological and paleoenvironmental evidence from the Pontic region reveal no recognizable changes in population dynamics between 14 and 6 ky BP that could be linked to an inundation of large magnitude [Dolukhanov, P., Shilik, K., 2006. Environment, sea-level changes, and human migrations in the northern Pontic area during late Pleistocene and Holocene times. In: Yanko-Hombach, V., Gilbert, A.S., Panin, N., Dolukhanov, P.M. (Eds.), The Black Sea Flood Question: Changes in Coastline, Climate, and Human Settlement. Springer, Dordrecht, pp. 297-318; Stanko, V.N., 2006. Fluctuations in the level of the Black Sea and Mesolithic settlement of the northern Pontic area. In: Yanko-Hombach, V., Gilbert, A.S., Panin, N., Dolukhanov, P.M. (Eds.), The Black Sea Flood Question: Changes in Coastline, Climate, and Human Settlement. Springer, Dordrecht, pp. 371-385]. More specifically, Mesolithic and early Neolithic archaeological data in southeastern Europe and Ukraine give no indications of shifts in human subsistence or other behavior at the time of the proposed catastrophic flood in the Early Holocene [Anthony, D., 2006. Pontic-Caspian Mesolithic and Early Neolithic societies at the time of the Black Sea Flood: A small audience and small effects. In: Yanko-Hombach, V., Gilbert, A.S., Panin, N., Dolukhanov, P.M. (Eds.), The Black Sea Flood Question: Changes in Coastline, Climate, and Human Settlement. Springer, Dordrecht, pp. 345-370; Dergachev and Dolukhanov, 2006. The Neolithization of the North Pontic area and the Balkans in the context of the Black Sea Floods. In: Yanko-Hombach, V., Gilbert, A.S., Panin, N., Dolukhanov, P.M. (Eds.), The Black Sea Flood Question: Changes in Coastline, Climate, and Human Settlement. Springer, Dordrecht, pp. 489-514]

Digital shaded relief image of a carbonate platform (northern Great Bahama Bank); scenery seen and unseen, 1996, Boss Sk,
A mosaic image of the northern Great Bahama Bank was created from separate gray-scale Landsat images using photo-editing and image analysis software that is commercially available for desktop computers. Measurements of pixel gray levels (relative scale from 0 to 255 referred to as digital number, DN) on the mosaic image were compared to bank-top bathymetry (determined from a network of single-channel, high-resolution seismic profiles), bottom type (coarse sand, sandy mud, barren rock, or reef determined from seismic profiles and diver observations), and vegetative cover (presence and/or absence and relative density of the marine angiosperm Thalassia testudinum determined from diver observations). Results of these analyses indicate that bank-top bathymetry is a primary control on observed pixel DN, bottom type is a secondary control on pixel DN, and vegetative cover is a tertiary influence on pixel DN. Consequently, processing of the gray-scale Landsat mosaic with a directional gradient edge-detection filter generated a physiographic shaded relief image resembling bank-top bathymetric patterns related to submerged physiographic features across the platform. The visibility of submerged karst landforms, Pleistocene eolianite ridges, islands, and possible paleo-drainage patterns created during sea-level lowstands is significantly enhanced on processed images relative to the original mosaic. Bank-margin ooid shoals, platform interior sand bodies, reef edifices, and bidirectional sand waves are features resulting from Holocene carbonate deposition that are also more clearly visible on the new physiographic images. Combined with observational data (single-channel, high-resolution seismic profiles, bottom observations by SCUBA divers, sediment and rock cores) across the northern Great Bahama Bank, these physiographic images facilitate comprehension of areal relations among antecedent platform topography, physical processes, and ensuing depositional patterns during sea-level rise

Holocene stratigraphy of Cobweb Swamp, a Maya wetland in northern Belize, 1996, Jacob J. S. , Hallmark C. T. ,
We investigated the soils and sediments of Cobweb Swamp, adjacent to the archaeological site of Colha in northern Belize, to adumbrate landscape evolution and the impact of the ancient Maya on a tropical palustrine wetland. The Cobweb section exposes a complex and dynamically evolving landscape, with a rich interplay between natural and human forces. The Cobweb depression probably formed as a karstic doline or polje in interbedded limestone and marl of late Tertiary or Pleistocene age. During the latest Pleistocene, a terrestrial marsh covered most of the depression. Slope wash and colluviation from adjacent slopes impacted the depression during the early Holocene, possibly in response to a drier and cooler climate reported to have occurred in the region during this time. After ca. 5600 B.P., the Cobweb depression was affected by relatively rapidly rising sea levels in the area, and a brackish lagoon filled the basin. By 4800 B.P., a peat filled in the lagoon, probably because precipitation of a marl in the lagoon coupled with decreasing rates of sea-level rise enabled emergent vegetation to encroach the shallowing waters. Humans first began to affect the landscape when this peat was at the surface. Massive deforestation, resulting in increased runoff and rising water levels, is the most likely explanation for a fresh-water lagoon that again inundated the Cobweb depression between 3400 and 500 B.P. The Maya Clay was deposited on the edge of this lagoon as the result of upland erosion, almost as soon as deforestation began, but the bulk of the deposit was coincident with the sudden collapse of the Classic Maya civilization ca. 1000 B.P., suggesting that significant environmental degradation was associated with the demise of the Classic Maya. Peat began to fill the Cobweb lagoon sometime before 500 B.P., probably the result of shallower water levels from decreasing runoff resulting from reforestation after abandonment by the Maya. ------------------------------------------------------

Two Ordovician unconformities in North China: Their origins and relationships to regional carbonate-reservoir characteristics, 1997, Liu B. , Wang Y. H. , Qian X. L. ,
The two unconformities developed on the tops of the Lower Ordovician Liangjiashan Formation (UF1) and the Middle Ordovician Majiagou- or Fengfeng Formation (UF2) are essential boundaries that controlled the formation and distribution of the Lower Paleozoic karst-related reservoirs. UF1 and UF2 have been interpreted as representing short-and long-terms of tectonic uplift, respectively, but new evidence led us to conclude that they were created by different original mechanisms and therefore the related reservoirs should be predicted in different ways. UF1 was commonly interpreted as the result of southern upwarping of the basement, but sequence-stratigraphic analysis supports its origin by eustatic sea-level changes. Spatially, the most favorable regional reservoirs controlled by UF1 should be located in the central area of North China, where the carbonate sediments experienced intensive shallow-subsurface dolomitization with following meteoric water leaching. UF2 was created by tectonic event which resulted in an intra-plate downward flexure and subsequent peripheral bulge. In the depression belt of central North China the younger strata (Fengfeng Fm) were protected, but along the bulge meteoric water eroded them. As a result, the potential regional reservoirs related to UF2 are likely to be distributed along the peripheral-uplift belts, especially around the remnant of the Fengfeng Formation. Based on the analysis of these two unconformities, the Early Paleozoic tectono-sedimentary evolution of North China Plate can be largely divided into four stages: (1) the Cambrian Period, characterized by eustatic sea-level rise and tectonic subsidence; (2) early stage of the Early Ordovician, characterized by eustatic-sea-level fall exceeding tectonic subsidence and development of UF1; (3) from the late stage of the Early Ordovician to the Middle Ordovician, featured by eustatic-sea-level rise and slow tectonic subsidence;(4) from the late stage of the Middle Ordovician to the Early Carboniferous, distinguished by vigorous tectonic uplift and development of UF2

Seismic stratigraphy of Late Quaternary deposits from the southwestern Black Sea shelf: evidence for non-catastrophic variations in sea-level during the last ~10[punctuation space]000 yr, 2002, Aksu Ae, Hiscott Rn, Yasar D, Isler Fi, Marsh S,
Detailed interpretation of single channel seismic reflection and Huntec deep-tow boomer and sparker profiles demonstrates that the southwestern Black Sea shelf formed by a protracted shelf-edge progradation since the Miocene-Pliocene. Five seismic-stratigraphic units are recognized. Unit 1 represents the last phase of the progradational history, and was deposited during the last glacial lowstand and Holocene. It is divided into four subunits: Subunit 1A is interpreted as a lowstand systems tract, 1B and 1C are interpreted as a transgressive systems tract, and Subunit 1D is interpreted as a highstand systems tract. The lowstand systems tract deposits consist of overlapping and seaward-prograding shelf-edge wedges deposited during the lowstand and the subsequent initial rise of sea level. These shelf-edge wedges are best developed along the westernmost and easternmost segments of the study area, off the mouths of rivers. The transgressive systems tract deposits consist of a set of shingled, shore-parallel, back-stepping parasequences, deposited during a phase of relatively rapid sea-level rise, and include a number of prograded sediment bodies (including barrier islands, beach deposits) and thin veneers of seismically transparent muds showing onlap onto the flanks of older sedimentary features. A number of radiocarbon dates from gravity cores show that the sedimentary architecture of Unit 1 contain a detailed sedimentary record for the post-glacial sea-level rise along the southwestern Black Sea shelf. These data do not support the catastrophic refilling of the Black Sea by waters from the Mediterranean Sea at 7.1 ka postulated by [Ryan, Pitman, Major, Shimkus, Maskalenko, Jones, Dimitrov, Gorur, Sakinc, Yuce, Mar. Geol. 138 (1997) 119-126], [Ryan, Pitman, Touchstone Book (1999) 319 pp.], and [Ballard, Coleman, Rosenberg, Mar. Geol. 170 (2000) 253-261]

Late Quaternary history of the Marmara Sea and Black Sea from high-resolution seismic and gravity-core studies, 2002, Hiscott R. N. , Aksu A. E. ,
Lithologic and multi-proxy paleoenvironmental data from 21 dated cores have been used to define three allostratigraphic units (allounits) within the late Quaternary successions of the Marmara Sea and Black Sea. Allounits are bounded by unconformities and their correlative conformities. In both regions, Allounit A extends from the seafloor downward to a ~12-11-ka sequence boundary, which is a major shelf-crossing unconformity in water depths less than ~100-110 m. In deep basins of the Marmara Sea, the lower part of Allounit A, designated Subunit A2, is a laminated sapropel, M1. On the shelf, Subunit A2 consists of backstepping delta lobes and early-transgressive barrier islands and sand sheets. Allounit B has only been recovered in Marmara Sea cores collected at water depths greater than ~90 m, and represents basinal or prodeltaic deposition during the 23-12-ka late Pleistocene lowstand. During the last glacial maximum, the shelves surrounding the Marmara Sea were subaerially exposed, and deltas of Allounit B accumulated along the present-day shelf edge. Following the post-glacial rise of global sea level to -75 m at ~12 ka, the Marmara Sea quickly became inundated and thereafter rose in synchroneity with the Mediterranean. By ~10 ka, the Black Sea rose to start spilling into the Marmara Sea, leading to establishment of a brackish-water lid that has persisted to the modern day. The strongest Black Sea outflow began at ~10 ka and persisted to ~6 ka, promoting the accumulation of sapropel M1 in the deep Marmara Sea, and progradation of an overflow delta just south of the exit from the Bosphorus Strait. Allounit C is a laminated sapropel (M2) in basinal cores, dated at ~30-23 ka. Like M1, it is believed that M2 accumulated during a period of increased brackish-water input into the Marmara Sea mainly from the Black Sea. In the Black Sea, wave erosion kept the shelf stripped of unconsolidated sediments during the falling sea level associated with the last glaciation and subsequent early stages of the post-glacial Holocene transgression. This erosion created a major unconformity, [alpha]. Shelf-edge deltas of Allounit B received their sediment during the last lowstand from small rivers that likely coalesced into a single system toward the shelf edge, at modern water depths of -100 to -110 m. These deltas were active until ~11-10.5 ka. Subsequently, sea level in the Black Sea rose to -40 m by ~10 ka, and a set of backstepping barrier islands developed on the shelf as part of the associated transgressive systems tract. Once water level reached -40 m, continued sea-level rise stalled until ~9 ka as the Black Sea began to spill across the Bosphorus Strait into the Marmara Sea

Karst processes from the beginning to the end: How can they be dated?, 2003, Bosk, B

Determining the beginning and the end of the life of a karst system is a substantial problem. In contrast to most of living systems development of a karst system can be „frozen“ and then rejuvenated several times (polycyclic and polygenetic nature). The principal problems may include precise definition of the beginning of karstification (e.g. inception in speleogenesis) and the manner of preservation of the products of karstification. Karst evolution is particularly dependent upon the time available for process evolution and on the geographical and geological conditions of the exposure of the rock. The longer the time, the higher the hydraulic gradient
and the larger the amount of solvent water entering the karst system, the more evolved is the karst. In general, stratigraphic discontinuities, i.e. intervals of nondeposition (disconformities and unconformities), directly influence the intensity and extent of karstification. The higher the order of discontinuity under study, the greater will be the problems of dating processes and events. The order of unconformities influences the stratigraphy of the karst through the amount of time available for subaerial processes to operate. The end of karstification can also be viewed from various perspectives. The final end occurs at the moment when the host
rock together with its karst phenomena is completely eroded/denuded. In such cases, nothing remains to be dated. Karst forms of individual evolution stages (cycles) can also be destroyed by erosion, denudation and abrasion without the necessity of the destruction of the whole sequence of karst rocks. Temporary and/or final interruption of the karstification process can be caused by the fossilisation of karst due to loss of its hydrological function. Such fossilisation can be caused by metamorphism, mineralisation,
marine transgressions, burial by continental deposits or volcanic products, tectonic movements, climatic change etc. Known karst records for the 1st and 2nd orders of stratigraphic discontinuity cover only from 5 to 60 % of geological time. The shorter the time available for karstification, the greater is the likelihood that karst phenomena will be preserved in the stratigraphic record. While products of short-lived karstification on shallow carbonate platforms can be preserved by deposition during the immediately succeeding sea-level rise, products of more pronounced karstification can be destroyed by a number of different geomorphic
processes. The longer the duration of subaerial exposure, the more complex are those geomorphic agents.
Owing to the fact that unmetamorphosed or only slightly metamorphosed karst rocks containing karst and caves have occurred since Archean, we can apply a wide range of geochronologic methods. Most established dating methods can be utilised for direct and/or indirect dating of karst and paleokarst. The karst/paleokarst fills are very varied in composition, including a wide range of clastic and chemogenic sediments, products of surface and subsurface volcanism (lava, volcaniclastic materials, tephra), and deepseated
processes (hydrothermal activity, etc). Stages of evolution can also be based on dating correlated sediments that do not fill karst voids directly. The application of individual dating methods depends on their time ranges: the older the subject of study, the more limited is the choice of method. Karst and cave fills are relatively special kinds of geologic materials. The karst environment favours both the preservation of paleontological remains and their destruction. On one hand, karst is well known for its richness of paleontological sites, on the other hand most cave fills are complete sterile, which is true especially for the inner-cave facies. Another
problematic feature of karst records is the reactivation of processes, which can degrade a record by mixing karst fills of different ages.


Late Pleistocene-Holocene sea-level rise and the pattern of coastal karst inundation: records from submerged speleothems along the Eastern Adriatic Coast (Croatia), 2005, Suric Masa, Juracic Mladen, Horvatincic Nada, Krajcar Bronic Ines,
In order to reconstruct the late Pleistocene-Holocene sea-level rise along the Eastern Adriatic Coast, eight speleothems were collected from three submerged caves along the Croatian coast from depths of -38.5 to -17 m. The marine biogenic overgrowth layer and the youngest and the oldest parts of the speleothems were dated by the 14C method. Their stable isotope (13C/12C and 18O/16O) contents were also measured. From the measured 14C activity of the marine overgrowth and using the model of Alessio et al. (1992, Risultati preliminari relativi alla datazione di speleotemi sommersi nelle fasce costiere del Tirreno centrale. Giornale di Geologia ser. 3 54/2, 165-193), the start of overgrowth (i.e., the time of flooding by seawater) was determined to be 10,185 cal BP at -36 m, 9160 cal BP at -34 m, and 7920 cal BP at -23 m.Our results partially match the sea-level curves reconstructed for adjacent areas (Tyrrhenian Coast and French Mediterranean Coast). However, the start of the marine overgrowth on speleothems in pit caves indicates strong dependence on the steepness of the terrain. On steep, extensively karstified coasts, marine overgrowths on speleothems coincided with the submersion of the speleothems due to the relatively short distance between the pit and the open sea and fast penetration of seawater into the pit. In contrast, marine overgrowths on speleothems in pits in the flat terrains occurred later because speleothem growth ceased due to flooding with fresh groundwater. Later, the fresh water was replaced by seawater due to the greater distance of the inland pits to the former coast

Evolution of the Adriatic carbonate platform: Palaeogeography, main events and depositional dynamics, 2005, Vlahovic I. , Tisljar J. , Velic I. , Maticec D. ,
The Adriatic Carbonate Platform (AdCP) is one of the largest Mesozoic carbonate platforms of the Perimediterranean region. Its deposits comprise a major part of the entire carbonate succession of the Croatian Karst (External or Outer) Dinarides, which is very thick (in places more than 8000 m), and ranges in age from the Middle Permian (or even Upper Carboniferous) to the Eocene. However, only deposits ranging from the top of the Lower Jurassic (Toarcian) to the top of the Cretaceous can be attributed to the AdCP (defined as an isolated palaeogeographical entity). Although the entire carbonate succession of the Karst Dinarides was deposited within carbonate platform environments, there were different types of carbonate platforms located in different palaeogeographical settings. Carboniferous to Middle Triassic mixed siliciclastic-carbonate deposits were accumulated along the Gondwanian margin, on a spacious epeiric carbonate platform. After tectonic activity, culminating by regional Middle Triassic volcanism recorded throughout Adria (the African promontory), a huge isolated carbonate Southern Tethyan Megaplatform (abbreviated as STM) was formed, with the area of the future AdCP located in its inner part. Tectonic disintegration of the Megaplatform during the middle to late Early Jurassic resulted in the establishment of several carbonate platforms (including the Adriatic, Apenninic and Apulian) separated by newly drowned deeper marine areas (including the Adriatic Basin as a connection between the Ionian and Belluno basins, Lagonero, Basin, and the area of the Slovenian and Bosnian troughs). The AdCP was characterised by predominantly shallow-marine deposition, although short or long periods of emergence were numerous, as a consequence of the interaction of synsedimentary tectonics and eustatic changes. Also, several events of temporary platform drowning were recorded, especially in the Late Cretaceous, when synsedimentary tectonics became stronger, leading up to the final disintegration of the AdCP. The thickness of deposits formed during the 125 My of the AdCP's existence is variable (between 3500 and 5000 m). The end of AdCP deposition was marked by regional emergence between the Cretaceous and the Palaeogene. Deposition during the Palaeogene was mainly controlled by intense synsedimentary tectonic deformation of the former platform area-some carbonates (mostly Eocene in age) were deposited on irregular ramp type carbonate platforms surrounding newly formed flysch basins, and the final uplift of the Dinarides reached its maximum in the Oligocene/Miocene. The Adriatic Carbonate Platform represents a part (although a relatively large and well-preserved one) of the broader shallow-water carbonate platform that extended from NE Italy to Turkey (although its continuity is somewhat debatable in the area near Albanian/Greece boundary). This large carbonate body, which was deformed mostly in the Cenozoic (including a significant reduction of its width), needs a specific name, and the Central Mediterranean Carbonate Platform is proposed (abbreviated to CMCP), although the local names (such as AdCP for its NW part) should be kept to enable easier communication, and to facilitate description of local differences in platform evolution,

The Ardeche endokarstic responses to the eustatic variations resulting from the Messinian salinity crisis, 2006, Mocochain L. , Clauzon G. , Bigot J. Y. ,
The Messinian salinity crisis is typically recorded by evaporites in the abyssal plains of the Mediterranean Sea and by canyons incised into the Mediterranean margins and their hinterlands. However, the impacts of crisis on geomorphology and surface dynamics lasted, until. canyons were filled by sediments in the Pliocene (fig. 2). In the mid-Rhone valley, the Ardeche Cretaceous carbonate platform is incised over 600 m by the Rhone Messinian canyon. The canyon thalweg is located - 236 m Lis) (below sea level) in the borehole of Pierrelatte [Demarcq, 1960; fig. 1]. During the Pliocene, this canyon was flooded as a ria and infilled by a Gilbert type fan delta [Clauzon and Rubino, 1992; Clauzon et al., 1995]. The whole Messinian-Pliocene third order cycle [Haq et al., 1987] generated four benchmark levels. The first two are [Clauzon, 1996]: (i) The pre-evaporitic abandonment Surface which is mapped around the belvedere of Saint-Restitut (fig. 1). This Surface is synchronous [Clauzon, 1996] of the crisis onset (5.95 Ma) [Gautier et al., 1994; Krigjsman et al., 1999] and, consequently, is an isochrounous benchmark. (ii) The Messinian erosional surface is also an isochronous benchmark due to the fast flooding [Blanc, 2002] of the Rhone canyon, becoming a ria at 5.32 Ma [Hilgen and Langereis, 1988]. These surfaces are the result of endoreic Mediterranean sea level fall more than a thousand meters below the Atlantic Ocean. A huge accommodation Space (up to more than 1000 in) was created as sea-level rose up to 80 in above its present-day level (asl) during (lie Pliocene highstand of cycle TB 3.4 (from 5.32 to 3.8 Ma). During the Lower Pliocene this accommodation space was filled by a Gilbert fan delta. This history yields two other benchmark levels: (i) the marine/non marine Pliocene transition which is an heterochronous surface produced by the Gilbert delta progradation. This surface recorded the Pliocene highstand sea level; (ii) the Pliocene abandonment Surface at the top of the Gilbert delta continental wedge. Close to the Rhone-Ardeche confluence, the present clay elevations Of file four reference levels are (evolution of base-level synthesized in fig. 4): (1) 3 12 in asl, (2) 236 in bsl, (3) 130 m asl, (4) 190 In A. The Ardeche carbonate platform underwent karstification both surficial and at depth. The endokarst is characterized by numerous cavities organised in networks. Saint-Marcel Cave is one of those networks providing the most coillplete record (fig. 5). It opens out on the northern side of the Ardeche canyon at an altitude of 100 m. It is made up by three superposed levels extending over 45 km in length. The lower level (1) is flooded and functionnal. It extends beneath the Ardeche thalweg down to the depth of 10 m bsl reached by divers. The observations collected in the galleries lead us to the conclusion that the karst originated in the vadose area [Brunet, 2000]. The coeval base-level was necessarily below those galleries. The two other levels (middle (2) and upper (3)) are today abandoned and perched. The middle level is about 115 m asl and the upper one is about 185 m A. They are horizontal and have morphologies specific to the phreatic and temporary phreatic zone of the karst (fig. 6). In literature, the terracing of the Saint-Marcel Cave had been systematically interpreted as the result of the lowering by steps of the Ardeche base-level [Guerin, 1973; Blanc, 1995; Gombert, 1988; Debard, 1997]. In this interpretation, each deepening phase of the base level induces the genesis of the gravitary shaft and the abandonment of the previous horizontal level. The next stillstand of base level leads to the elaboration of a new horizontal level (fig. 7). This explanation is valid for most of Quaternary karsts, that are related to glacio-eustatic falls of sea-level. However Our study on the Saint-Marcel Cave contests this interpretation because all the shafts show an upward digging dynamism and no hint of vadose sections. The same 'per ascensum' hydrodynamism was prevailing during the development of the whole network (figs. 8 and 9). We interpret the development of the Ardeche endokarst as related to the eustatic Messinian-Pliocene cycle TB 3.4/3.5 recorded by the Rhone river. The diving investigations in the flooded part of the Saint-Marcel Cave and also in the vaLlClusian springs of Bourg.-Saint-Andeol reached - 154 in bsl. Those depths are compatible only with the incision of the Messinian Rhone canyon at the same altitude (- 236 m bsl). The Saint-Marcel lower level would have develop at that time. The ascending shaping of levels 2 and 3 is thus likely to have formed during the ensuing sea-level rise and highstand during the Pliocene, in mainly two steps: (i) the ria stage controlled by the Mediterranean sea level rise and stillstand; (ii) the rhodanian Gilbert delta progradation, that controlled the genesis of the upper level (fig. 10)

Eogenetic karst, glacioeustatic cave-pools and anchihaline environments on Mallorca Island: a discussion of coastal speleogenesis., 2007, Gins Angel, Gins Joaqun
Coastal karst is characterized by special geomorphologic and hydrodynamic conditions as well as by peculiar sedimentary, geochemical, and biospeleological environments. Generally, the more distinctive karstic features produced near the coastline are strongly influenced by sea-level changes, which generate a broad set of interactions between littoral processes and karst development. The glacioeustatic rises and falls of sea level affected the littoral karst in different ways, namely: vertical and horizontal shifts in the shoreline position, changes in elevation of the local water table, and vertical displacements of the halocline. Most eogenetic karsts have been subjected over long time spans to repeated changes of a variety of vertically-zoned geochemical environments: vadose, phreatic meteoric-water, brackish mixing-waters and even marine water. Many coastal caves appear to be passively drowned by Holocene sea-level rise, and to contain glacioeustatic pools of varied size where the current water table intersects formerly air-filled chambers or passages. These coastal phreatic waters are controlled by sea level and fluctuate with tides. Significantly, features such as phreatic speleothems that are able to record ancient sea levels occur closely associated to the surface of the pools. The cave pools are brackish or even marine anchialine environments that contain remarkable communities of troglobitic stygofauna. All of these aspects can be studied in detail along the southern and eastern coast of Mallorca Island owing to the widespread outcrop of Upper Miocene calcarenites, in which the development of eogenetic karst features started approximately 6 Ma ago, at the end of Messinian times. Some outstanding coastal caves result and include the celebrated Coves del Drac (explored by E.A. Martel in 1896), the labyrinthine Cova des Pas de Vallgornera (more than 30 km in length) and the recently explored Cova de sa Gleda (whose submerged passages exceed 10 km, as shown by scuba-diving surveys). Careful observations and detailed mapping of caves in the Upper Miocene reef rocks of Mallorca permit a better understanding of the coastal speleogenetic processes involved in a typical eogenetic karst over time ranges greater than 1 Ma. The role played by recurrent glacioeustatic oscillations of sea level and the subsequent rises and falls of the water table are emphasized in our model. There are two associated mechanisms: the triggering of breakdown by the loss of buoyant support that follows each lowering of sea level (i.e., during glaciations or smaller cold events) and the later underwater solution of boulders and collapse debris (during high sea levels that correspond to interglacial events). Additionally, tidal fluctuations affecting groundwaters would enhance solutional enlargement of caves and vug-porosity connected to the sea, rather than conventional karstic flow through conduits that probably is not as important an agent in eogenetic speleogenesis.

Eogenetic karst, glacioeustatic cave pools and anchialine environments on Mallorca Island: a discussion of coastal speleogenesis, 2007, Gins Angel And Gins Joaquin
Coastal karst is characterized by special geomorphologic and hydrodynamic conditions as well as by peculiar sedimentary, geochemical, and biospeleological environments. Generally, the more distinctive karstic features produced near the coastline are strongly influenced by sea-level changes, which generate a broad set of interactions between littoral processes and karst development. The glacioeustatic rises and falls of sea level affected the littoral karst in different ways, namely: vertical and horizontal shifts in the shoreline position, changes in elevation of the local water table, and vertical displacements of the halocline. Most eogenetic karsts have been subjected over long time spans to repeated changes of a variety of vertically-zoned geochemical environments: vadose, phreatic meteoric-water, brackish mixing-waters and even marine water. Many coastal caves appear to be passively drowned by Holocene sea-level rise, and to contain glacioeustatic pools of varied size where the current water table intersects formerly air-filled chambers or passages. These coastal phreatic waters are controlled by sea level and fluctuate with tides. Significantly, features such as phreatic speleothems that are able to record ancient sea levels occur closely associated to the surface of the pools. The cave pools are brackish or even marine anchialine environments that contain remarkable communities of troglobitic stygofauna. All of these aspects can be studied in detail along the southern and eastern coast of Mallorca Island owing to the widespread outcrop of Upper Miocene calcarenites, in which the development of eogenetic karst features started approximately 6 Ma ago, at the end of Messinian times. Some outstanding coastal caves result and include the celebrated Coves del Drac (explored by E.A. Martel in 1896), the labyrinthine Cova des Pas de Vallgornera (more than 30 km in length) and the recently explored Cova de sa Gleda (whose submerged passages exceed 10 km, as shown by scuba-diving surveys). Careful observations and detailed mapping of caves in the Upper Miocene reef rocks of Mallorca permit a better understanding of the coastal speleogenetic processes involved in a typical eogenetic karst over time ranges greater than 1 Ma. The role played by recurrent glacioeustatic oscillations of sea level and the subsequent rises and falls of the water table are emphasized in our model. There are two associated mechanisms: the triggering of breakdown by the loss of buoyant support that follows each lowering of sea level (i.e., during glaciations or smaller cold events) and the later underwater solution of boulders and collapse debris (during high sea levels that correspond to interglacial events). Additionally, tidal fluctuations affecting groundwaters would enhance solutional enlargement of caves and vug-porosity connected to the sea, rather than conventional karstic flow through conduits that probably is not as important an agent in eogenetic speleogenesis.

Eogenetic karst, glacioeustatic cave pools and anchialine environments on Mallorca Island: a discussion of coastal speleogenesis, 2007, Gins A. , Gins J.

Coastal karst is characterized by special geomorphologic and hydrodynamic conditions as well as by peculiar sedimentary, geochemical, and biospeleological environments. Generally, the more distinctive karstic features produced near the coastline are strongly influenced by sea-level changes, which generate a broad set of interactions between littoral processes and karst development. The glacioeustatic rises and falls of sea level affected the littoral karst in different ways, namely: vertical and horizontal shifts in the shoreline position, changes in elevation of the local water table, and vertical displacements of the halocline. Most eogenetic karsts have been subjected over long time spans to repeated changes of a variety of vertically-zoned geochemical environments: vadose, phreatic meteoric-water, brackish mixing-waters and even marine water. Many coastal caves appear to be passively drowned by Holocene sea-level rise, and to contain glacioeustatic pools of varied size where the current water table intersects formerly air-filled chambers or passages. These coastal phreatic waters are controlled by sea level and fluctuate with tides. Significantly, features such as phreatic speleothems that are able to record ancient sea levels occur closely associated to the surface of the pools. The cave pools are brackish or even marine anchialine environments that contain remarkable communities of troglobitic stygofauna. All of these aspects can be studied in detail along the southern and eastern coast of Mallorca Island owing to the widespread outcrop of Upper Miocene calcarenites, in which the development of eogenetic karst features started approximately 6 Ma ago, at the end of Messinian times. Some outstanding coastal caves result and include the celebrated Coves del Drac (explored by E.A. Martel in 1896), the labyrinthine Cova des Pas de Vallgornera (more than 30 km in length) and the recently explored Cova de sa Gleda (whose submerged passages exceed 10 km, as shown by scuba-diving surveys). Careful observations and detailed mapping of caves in the Upper Miocene reef rocks of Mallorca permit a better understanding of the coastal speleogenetic processes involved in a typical eogenetic karst over time ranges greater than 1 Ma. The role played by recurrent glacioeustatic oscillations of sea level and the subsequent rises and falls of the water table are emphasized in our model. There are two associated mechanisms: the triggering of breakdown by the loss of buoyant support that follows each lowering of sea level (i.e., during glaciations or smaller cold events) and the later underwater solution of boulders and collapse debris (during high sea levels that correspond to interglacial events). Additionally, tidal fluctuations affecting groundwaters would enhance solutional enlargement of caves and vug-porosity connected to the sea, rather than conventional karstic flow through conduits that probably is not as important an agent in eogenetic speleogenesis.


Structure des rseaux karstiques: les contrles de la splogense pigne, 2011, Audra P. , Palmer A. N.

Cave development is related to the geomorphic evolution. Their morphology, preserved far longer than correlative surface features allows reconstructing the regional history of the surrounding landscape. Modeling shows that initial cave development occurs along the water table with loops in the phreatic zone along fractures. Consequently, cave profiles and levels reflect the local base level and its changes. Cave profile is controlled by timing, geological structure, and recharge. In first exposed rocks, juvenile pattern displays steep vadose passages. In perched aquifers, vadose erosion produces large passage along aquiclude. In dammed aquifers, the main drain is established at the water table when recharge is fairly regular. But when irregular recharge causes backflooding, looping profiles develop throughout the epiphreatic zone. Interconnected cave levels correspond to some of the largest cave systems in the world. The oldest abandoned highest levels have been dated beyond 3.5 Ma (Mammoth Cave). However, when base level rises, the deepest parts of the karst are flooded; the flow rises along phreatic lifts, and discharges at vauclusian springs. In the epiphreatic zone, floodwater produces looping tubes above the low-flow water table. In such a case of baselevel rise, per ascensum speleogenesis can produce higher-elevation passages that are younger than passages at lower elevations. base-level rises occur after tectonic subsidence, filling of valleys, or sea-level rise, as for instance around the Mediterranean in response to the Messinian Crisis. Deep-phreatic karst, if not hypogenic, can generally be attributed to flooding by a base-level rise. 


Glacier Caves, 2012, Gulley Jason D. , Fountain Andrew G.

The processes of cave formation in glaciers are analogous to cave formation in limestone and form from the preferential enlargement of high permeability pathways that connect discrete recharge and discharge points. Cave enlargement in glaciers is driven by small amounts of heat produced by friction as water flows through these high permeability pathways. Because rates of ice melting are many orders of magnitude faster than rates of the dissolution of limestone, glacier caves can grow to humanly traversable diameters within time scales of days to weeks whereas limestone caves of equivalent dimensions require 105–106 years. Because glacier ice is deformable, ice caves are squeezed shut at rates that increase with ice thickness, with deep caves squeezing closed in a matter of days. Glacier cave formation is therefore a dynamic process reflecting competition between enlargement and creep closure. While some glacier caves are reused and continue to evolve from year to year, many glacier caves must form each melt season. The processes of cave formation in glaciers exert important control on subglacial water pressure and affect how fast glaciers flow from higher, colder elevations, to lower warmer elevations. Ice flow directly into the ocean and glacial melt generally are important contributions to sea-level rise. Glacier caves are common in all glaciers that experience significant surface melting.


Results 1 to 15 of 17
You probably didn't submit anything to search for