Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That hydraulic conductivity is 1. a proportionality constant relating hydraulic gradient to specific discharge which for an isotropic medium and homogeneous fluid, equals the volume of water at the existing kinematic viscosity that will move in unit time under a unit hydraulic gradient through a unit area measured at right angles to the direction of flow [22]. 2. the volume of water that will move through a medium in a unit of time under a unit hydraulic gradient through a unit area measured perpendicular to the direction of flow [22]. 3. the ability of a rock unit to conduct water under specified conditions [10]. it is typically expressed as gpd/ft2, ft/day, or m/day.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
Engineering challenges in Karst, Stevanović, Zoran; Milanović, Petar
See all featured articles
Featured articles from other Geoscience Journals
Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy), Dimuccio, L.A.; Rodrigues, N.; Larocca, F.; Pratas, J.; Amado, A.M.; Batista de Carvalho, L.A.
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
See all featured articles from other geoscience journals

Search in KarstBase

Your search for sealevel (Keyword) returned 61 results for the whole karstbase:
Showing 1 to 15 of 61
Controversy over the great flood hypotheses in the Black Sea in light of geological, paleontological, and archaeological evidence, , Yankohombach Valentina, Gilbert Allan S. , Dolukhanov Pavel,
Legends describing a Great Flood are found in the narratives of several world religions, and the biblical account of Noah's Flood is the surviving heir to several versions of the ancient Mesopotamian Flood Myth. Recently, the story of the biblical deluge was connected to the Black Sea, together with the suggestion that the story's pre-Mesopotamian origins might be found in the Pontic basin [Ryan, W.B.F., Pitman, III, W.C., 1998. Noah's Flood: The New Scientific Discoveries About the Event That Changed History. Simon and Schuster, New York]. Based on the significance of this flood epic in the Judeo-Christian tradition, popular interest surged following publication of the idea.Currently, two Great Flood scenarios have been proposed for the Black Sea: (1) an Early Holocene event caused by catastrophic Mediterranean inflow at 7.2 ky BP (initial hypothesis of [Ryan et al., 1997. An abrupt drowning of the Black Sea shelf. Marine Geology 138, 119-126]) or 8.4 ky BP (modified hypothesis of [Ryan et al., 2003. Catastrophic flooding of the Black Sea. Annual Review of Earth and Planetary Science 31, 525-554.); and (2) a Late Pleistocene event brought on by Caspian influx between 16 and 13 ky BP [Chepalyga, A.L., 2003. Late glacial Great Flood in the Black Sea and Caspian Sea. GSA Annual Meeting and Exposition, 2-5 November 2003, Seattle, USA, p. 460]. Both hypotheses claim that the massive inundations of the Black Sea basin and ensuing large-scale environmental changes had a profound impact on prehistoric human societies of the surrounding areas, and both propose that the event formed the basis for the biblical Great Flood legend.This paper attempts to determine whether the preponderance of existing evidence sustains support for these Great Floods in the evolution of the Black Sea. Based upon established geological and paleontological data, it finds that the Late Pleistocene inundation was intense and substantial whereas the Early Holocene sea-level rise was not. Between 16 and 13 ky BP, the Late Neoeuxinian lake (the Late Pleistocene water body in the Pontic basin pre-dating the Black Sea) increased rapidly from ~-14 to -50 m (below the present level of the Black Sea), then rose gradually to ~-20 m by about 11 ky BP. At 11-10 ky BP (the Younger Dryas), it dropped to ~-50 m. When the Black Sea re-connected with the Sea of Marmara at about 9.5 ky BP, inflowing Mediterranean water increased the Black Sea level very gradually up to ~-20 m, and in so doing, it raised the salinity of the basin and brought in the first wave of Mediterranean immigrants. These data indicate no major drawdown of the Black Sea after the Younger Dryas, and they do not provide evidence for any catastrophic flooding of the Black Sea in the Early Holocene.In addition, available archaeological and paleoenvironmental evidence from the Pontic region reveal no recognizable changes in population dynamics between 14 and 6 ky BP that could be linked to an inundation of large magnitude [Dolukhanov, P., Shilik, K., 2006. Environment, sea-level changes, and human migrations in the northern Pontic area during late Pleistocene and Holocene times. In: Yanko-Hombach, V., Gilbert, A.S., Panin, N., Dolukhanov, P.M. (Eds.), The Black Sea Flood Question: Changes in Coastline, Climate, and Human Settlement. Springer, Dordrecht, pp. 297-318; Stanko, V.N., 2006. Fluctuations in the level of the Black Sea and Mesolithic settlement of the northern Pontic area. In: Yanko-Hombach, V., Gilbert, A.S., Panin, N., Dolukhanov, P.M. (Eds.), The Black Sea Flood Question: Changes in Coastline, Climate, and Human Settlement. Springer, Dordrecht, pp. 371-385]. More specifically, Mesolithic and early Neolithic archaeological data in southeastern Europe and Ukraine give no indications of shifts in human subsistence or other behavior at the time of the proposed catastrophic flood in the Early Holocene [Anthony, D., 2006. Pontic-Caspian Mesolithic and Early Neolithic societies at the time of the Black Sea Flood: A small audience and small effects. In: Yanko-Hombach, V., Gilbert, A.S., Panin, N., Dolukhanov, P.M. (Eds.), The Black Sea Flood Question: Changes in Coastline, Climate, and Human Settlement. Springer, Dordrecht, pp. 345-370; Dergachev and Dolukhanov, 2006. The Neolithization of the North Pontic area and the Balkans in the context of the Black Sea Floods. In: Yanko-Hombach, V., Gilbert, A.S., Panin, N., Dolukhanov, P.M. (Eds.), The Black Sea Flood Question: Changes in Coastline, Climate, and Human Settlement. Springer, Dordrecht, pp. 489-514]

Sealevel lowering during the Illinoian glaciation: evidence from a Bahama 'blue hole'., 1979, Gascoyne M. , Benjamin G. J. , Schwarcz H. P. , Ford D. C.

Sea-Level Lowering During the Illinoian Glaciation: Evidence from a Bahama 'Blue Hole', 1979, Gascoyne M, Benjamin Gj, Schwarcz Hp, Ford Dc,
Stalagmites have been recovered from 45 meters below sea level in an underwater karstic cave ('blue hole') near Andros Island in the Bahamas. Uranium series ages, corrected for contamination of the sample by young marine carbonate replacements, show that the speleothem was deposited between 160,000 and 139,000 years before the present. This period corresponds to the Illinoian glacial event and demonstrates that sea level must have been lowered by at least 42 meters (allowing for subsidence) from its present position during this time

Palaeoenvironment of lateritic bauxites with vertical and lateral differentiation, 1983, Valeton Ida,
Formation of lateritic bauxites of the type described in this paper occurs world-wide in Cretaceous and Tertiary coastal plains. The bauxites form elongate belts, sometimes hundreds of kilometres long, parallel to Lower Tertiary shorelines in India and South America and their distribution is not related to a particular mineralogical composition of the parent rock. The lateral movement of the major elements Al, Si, Fe, Ti is dependent on a high level and flow of groundwater. Varying efficiency of subsurface drainage produces lateral facies variations. Interfingering of marine and continental facies indicate a sea-land transition zone where the type of sediments also varies with minor tectonic movements or sea-level changes. A typical sediment association is found in India, Africa, South and North America. It consists of (i) red beds rich in detrital and dissolved material of reworked laterites, (ii) lacustrine sediments and hypersaline precipitates, (iii) lignites intercalated with marine clays, layers of siderite, pyrite, marcasite and jarosite, and (iv) marine chemical sediments rich in oolitic iron ores or glauconite. A model is developed to account for element distributions in lateritic bauxites in terms of groundwater levels and flow. Finally it is shown that many high-level bauxites are formed in coastal plains and that they are subsequently uplifted to their present altitude

Shallow-marine carbonate facies and facies models, 1985, Tucker M. E. ,
Shallow-marine carbonate sediments occur in three settings: platforms, shelves and ramps. The facies patterns and sequences in these settings are distinctive. However, one type of setting can develop into another through sedimentational or tectonic processes and, in the geologic record, intermediate cases are common. Five major depositional mechanisms affect carbonate sediments, giving predictable facies sequences: (1) tidal flat progradation, (2) shelf-marginal reef progradation, (3) vertical accretion of subtidal carbonates, (4) migration of carbonate sand bodies and (5) resedimentation processes, especially shoreface sands to deeper subtidal environments by storms and off-shelf transport by slumps, debris flows and turbidity currents. Carbonate platforms are regionally extensive environments of shallow subtidal and intertidal sedimentation. Storms are the most important source of energy, moving sediment on to shoreline tidal flats, reworking shoreface sands and transporting them into areas of deeper water. Progradation of tidal flats, producing shallowing upward sequences is the dominant depositional process on platforms. Two basic types of tidal flat are distinguished: an active type, typical of shorelines of low sediment production rates and high meteorologic tidal range, characterized by tidal channels which rework the flats producing grainstone lenses and beds and shell lags, and prominent storm layers; and a passive type in areas of lower meteorologic tidal range and higher sediment production rates, characterized by an absence of channel deposits, much fenestral and cryptalgal peloidal micrite, few storm layers and possibly extensive mixing-zone dolomite. Fluctuations in sea-level strongly affect platform sedimentation. Shelves are relatively narrow depositional environments, characterized by a distinct break of slope at the shelf margin. Reefs and carbonate sand bodies typify the turbulent shelf margin and give way to a shelf lagoon, bordered by tidal flats and/or a beach-barrier system along the shoreline. Marginal reef complexes show a fore-reef--reef core--back reef facies arrangement, where there were organisms capable of producing a solid framework. There have been seven such phases through the Phanerozoic. Reef mounds, equivalent to modern patch reefs, are very variable in faunal composition, size and shape. They occur at shelf margins, but also within shelf lagoons and on platforms and ramps. Four stages of development can be distinguished, from little-solid reef with much skeletal debris through to an evolved reef-lagoon-debris halo system. Shelf-marginal carbonate sand bodies consist of skeletal and oolite grainstones. Windward, leeward and tide-dominated shelf margins have different types of carbonate sand body, giving distinctive facies models. Ramps slope gently from intertidal to basinal depths, with no major change in gradient. Nearshore, inner ramp carbonate sands of beach-barrier-tidal delta complexes and subtidal shoals give way to muddy sands and sandy muds of the outer ramp. The major depositional processes are seaward progradation of the inner sand belt and storm transport of shoreface sand out to the deep ramp. Most shallow-marine carbonate facies are represented throughout the geologic record. However, variations do occur and these are most clearly seen in shelf-margin facies, through the evolutionary pattern of frame-building organisms causing the erratic development of barrier reef complexes. There have been significant variations in the mineralogy of carbonate skeletons, ooids and syn-sedimentary cements through time, reflecting fluctuations in seawater chemistry, but the effect of these is largely in terms of diagenesis rather than facies

Miocene sea-level falls related to the geologic history of Midway Atoll, 1987, Lincoln J. M. , Schlanger Seymour O. ,

Cave dams of the Guanyan System, Guangxi, China, 1987, Smart P. L. , Waltham A. C. ,
With well over 1 million km2 of carbonate rocks exposed at the surface, and a history of exploitation spanning in excess of 2000 years, the Chinese probably have more experience than any other people in developing the water resources of carbonate aquifers. Interestingly, many of the smaller scale projects are carried out by local farmers and co-operatives, with little recourse to the advice of professional engineers and hydrologists, although even in large regional schemes, much local expertise and labour is involved (see for example Hegtkcar 1976). While recently some of the Chinese work on karst hydrology has become available in the west (Song 1981; Song et al 1983; Yuan 1981, ) much of the practical experience resulting from these local and small scale developments remains unpublished even in China. We were therefore very fortunate to be able to examine the engineering works associated with the Guanyan cave system, just south of Guilin, Guangxi Province, SE China, during a recent joint venture with the Institute of Karst Research, Ministry of Geology, Guilin. The Guanyan (Crown Cave) system is developed in a sequence of relatively pure, predominantly finegrained limestones and dolomites over 2600 m thick, and ranging from Devonian to Carboniferous in age (Yuan 1980). These are folded into thrust faulted, NW-SE-trending folds, but dips are generally less than 30{degrees}. The underlying impermeable shales, siltstones and sandstones form a mountainous terrain rising to 1400 m above sea-level east of the limestone, and provide the headwaters for streams feeding into the caves (Fig. ... This 250-word extract was created in the absence of an abstract

A MIDDLE PROTEROZOIC PALEOKARST UNCONFORMITY AND ASSOCIATED SEDIMENTARY-ROCKS, ELU BASIN, NORTHWEST CANADA, 1991, Pelechaty S. M. , James N. P. , Kerans C. , Grotzinger J. P. ,
A major palaeokarst erosion surface is developed within the middle Proterozoic Elu Basin, northwestern Canada. This palaeokarst is named the sub-Kanuyak unconformity and truncates the Parry Bay Formation, a sequence of shallow-marine dolostones that were deposited within a north-facing carbonate platform under a semi-arid climate. The sub-Kanuyak unconformity exhibits up to 90 m of local relief, and also formed under semi-arid conditions when Parry Bay dolostones were subaerially exposed during a relative sea-level drop of about 180 m. Caves and various karren developed within the meteoric vadose and phreatic zones. Their geometry, size and orientation were largely controlled by northwest- and northeast-trending antecedent joints, bedding, and lithology. Near-surface caves later collapsed forming valleys, and intervening towers or walls, and plains. Minor terra rossa formed on top of highs. Karstification was most pronounced in southern parts of Bathurst Inlet but decreased northward, probably reflecting varying lengths of exposure time along a north-dipping slope. The Kanuyak Formation is up to 65 m thick, and partially covers the underlying palaeokarst. It consists of six lithofacies: (i) breccia formed during collapse of caves, as reworked collapse breccia and regolith; (ii) conglomerate representing gravel-dominated braided-fluvial deposits; (iii) sandstone deposited as braided-fluvial and storm-dominated lacustrine deposits; (iv) interbedded sandstone, siltstone and mudstone of sheet flood origin; (v) dolostones formed from dolocretes and quiet-water lacustrine deposits; and (vi) red-beds representing intertidal-marine mudflat deposits. Rivers flowed toward the northwest and northeast within karst valleys and caves; lakes were also situated within valleys; marine mudflat sediments completely cover the palaeokarst to the north. A regional correlation of the sub-Kanuyak unconformity with the intra-Greenhorn Lakes disconformity within the Coppermine homocline suggests that similar styles of karstification occurred over an extensive region. The Elu Basin palaeokarst, however, was developed more landward, and was exposed for a longer period of time than the Coppermine homocline palaeokarst

GENERAL CENOZOIC EVOLUTION OF THE MALDIVES CARBONATE SYSTEM (EQUATORIAL INDIAN-OCEAN), 1992, Aubert O, Droxler Aw,
Analyses and interpretation of an industrial multi-channel seismic grid, a 2.3 km-deep industrial well (NMA-1) and two ODP (Sites 715 and 716), have generated new insights into the evolution of the Maldives carbonate system, Equatorial Indian Ocean. The present physiography of the Maldives Archipelago, a double chain of atolls delineating an internal basin, corresponds only to the latest phase of a long and dynamic evolution, far more complex than the simple vertical build-up of reef caps on top of thermally subsiding volcanic edifices. Through the Cenozoic evolution of the Maldives carbonate system, distinct phases of vertical growth (aggradation), exposure, regional or local drowning, and recovery of the shallow banks by lateral growth (progradation) have been recognized. The volcanic basement underlying the Maldives Archipelago is interpreted to be part of a volcanic ridge generated by the northern drift of the Indian plate on top of the hotspot of the island of Reunion. The volcanic basement recovered at well NMA-1 and ODP Site 715 has been radiometrically dated as 57.2 1.8 Ma (late Paleocene) by 40Ar-39Ar. Seismic and magnetic data indicate that this volcanic basement has been affected by a series of NNE-SSW trending subvertical faults, possibly associated with an early Eocene strike-slip motion along an old transform zone. The structural topography of the volcanic basement apprears to have dictated the initial geometry of the Eocene and early Oligocene Maldives carbonate system. Biostratigraphic analyses of samples, recovered by drilling in Site 715 and exploration well NMA-1, show that the Maldives shallow carbonate system was initiated during the early Eocene on top of what were originally subaerial volcanic edifices. The Eocene shallow carbonate sequence, directly overlying the volcanic basement at NMA-1, is dolomitized and remains neritic in nature, suggesting low subsidence rates until the early Oligocene. During this first phase of the Maldives carbonate system evolution, shallow carbonate facies aggraded on top of basement highs and thick deep-water periplatform sediments were deposited in some central seaways, precursors of the current wider internal basins. In the middle Oligocene, a plate reorganization of the equatorial Indian Ocean resulted in the segmentation of the hotspot trace and the spreading of the Maldives away from the transform zone. This plate reorganization resulted in increasing subsidence rates at NMA-1, interpreted to be associated with thermal cooling of the volcanic basement underlying the Maldives carbonate system. This middle Oligocene event also coincides with a regional irregular topographic surface, considered to represent a karst surface produced by a major low-stand. Deep-water carbonate facies, as seen in cuttings from NMA-1, overlie the shallow-water facies beneath the karst surface which can, therefore, be interpreted as a drowning unconformity. In the late Oligocene, following this regional deepening event, one single central basin developed, wider than its Eocene counterparts, and the current intraplatform basin was established. Since the early to middle Miocene, the shallow carbonate facies underwent a stage of local recovery by progradation of neritic environments towards the central basin. The simultaneous onset in the early middle Miocene of the monsoonal wind regime may explain the development of bidirectional slope progradations in the Maldives. During the late Miocene and the early Pliocene, several carbonate banks were locally drowned, whereas others (i.e. Male atoll) display well-developed lateral growth through margin progradations during the same interval. Differential carbonate productivity among the atolls could explain these diverse bank responses. High-frequency glacialeustatic sea-level fluctuations in the late Pliocene and Pleistocene resulted in periodic intervals of bank exposure and flooding, and developed the present-day physiography of atolls, with numerous faros along their rims and within their lagoons

DENUDATION CHRONOLOGY FROM CAVE AND RIVER TERRACE LEVELS - THE CASE OF THE BUCHAN KARST, SOUTHEASTERN AUSTRALIA, 1992, Webb J. A. , Fabel D. , Finlayson B. L. , Ellaway M. , Li S. , Spiertz H. P. ,
Detailed mapping of surface and underground karst features at Buchan, in eastern Victoria, has shown that the three river terraces along the Buchan River can be correlated with three levels of epiphreatic development in the nearby caves. Each level represents a stillstand in the denudational history of the area. Uranium series dating of speleothems and palaeomagnetic studies of cave sediments indicate that all three stillstands are more than 730 ka old. The periods of incision separating the stillstands were probably the result of active tectonic uplift. This contrasts with some northern parts of the Southeastern Highlands, which have been stable since the Eocene. The overall amount of incision and uplift at Buchan is small, indicating that the majority of scarp retreat in this section of the highlands must have occurred earlier. The denudation history of the Buchan area over the last 730 ka has seen only 2-3 m of incision, despite the major climatic and sea-level changes that have occurred in that time. Whereas most karst landscapes in the Northern Hemisphere have been extensively modified during the late Pleistocene, the Buchan karst was little affected, and its geomorphology has an older origin

HYDROGEOLOGY OF GRAND CAYMAN, BRITISH-WEST-INDIES - A KARSTIC DOLOSTONE AQUIFER, 1992, Ng K. C. , Jones B. , Beswick R. ,
On Grand Cayman, freshwater bodies present in the Bluff Formation are typically small and occur as thin lenses floating on top of dense saline water. Evaluation of the water resource potential of these freshwater lenses is difficult because of their variable hydrological conditions, complex paleohydrogeology and aquifer heterogeneity. Secondary porosity created by preferential dissolution of aragonitic fossil components is common. Open fissures and joints developed under tectonic stress and karst development associated with sea-level fluctuations are, however, the two most important causes of porosity and permeability in the aquifers on Grand Cayman. Fracture and karst porosity control the lens occurrence by: (1) acting as avenues for the intrusion of seawater or upward migration of saline water; (2) acting as recharge focal points; (3) enhancing hydrodynamic dispersion; (4) defining lens geometry; (5) facilitating carbonate dissolution along joints and fissures. A clear understanding of the hydrological and geological conditions is important in developing small lenses in a setting similar to that on Grand Cayman. This pragmatic approach can help identify the optimum location of the well field and avoid areas particularly susceptible to saline water intrusion

Continental deposits and archaeological data in the Trieste Karst area (north-east Italy: evidence of sea-level changes and possible tectonic activity in the Late Pleistocene and Early Holocene, 1993, Boschian G,

HIGH-RESOLUTION SEISMIC EXPRESSION OF KARST EVOLUTION WITHIN THE UPPER FLORIDIAN AQUIFER SYSTEM - CROOKED LAKE, POLK COUNTY, FLORIDA, 1994, Evans Mw, Snyder Sw, Hine Ac,
We collected 43 km of high resolution seismic reflection profiles from a 14.5-hectare lake in the central Florida sinkhole district and data from three adjacent boreholes to determine the relationship between falling lake levels and the underlying karst stratigraphy. The lake is separated from karstified Paleogene to early Neogene carbonates by 65-80 m of siliciclastic sands and clays. The carbonate and clastic strata include three aquifer systems separated by clay-confining units: a surficial aquifer system (fine to medium quartz sand in the upper 20-30 m), the 25-35 m thick intermediate aquifer system (in Neogene siliciclastics), and the highly permeable upper Floridan aquifer system in Paleogene to early Neogene limestones. Hydraulic connection between these aquifer systems is indicated by superjacent karst structures throughout the section. Collapse zones of up to 1000 m in diameter and > 50 m depth extend downward from a prominent Middle Miocene unconformity into Oligocene and Upper Eocene limestones. Smaller sinkholes (30-100 m diameter, 10-25 m depth) are present in Middle to Late Neogene clays, sands, and carbonates and extend downward to or below the Middle Miocene unconformity. Filled and open shafts (30-40 m diameter; 10-25 m depth) ring the lake margin and overlie subsurface karst features. The large collapse zones are localized along a northeast-southwest line in the northern ponds and disrupt or deform Neogene to Quaternary strata and at least 50 m of the underlying Paleogene carbonate rocks. The timing and vertical distribution of karst structures are used to formulate a four-stage model that emphasizes stratigraphic and hydrogeologic co-evolution. (1) Fracture-selective shallow karst features formed on Paleogene/early Neogene carbonates. (2) Widespread karstification was limited by deposition of Middle Miocene clays, but vertical karst propagation continued and was focused because of the topographic effects of antecedent karst. (3) Groundwater heads, increase with the deposition of thick sequences of clastics over the semipermeable clays during Middle and Late Neogene time. The higher water table and groundwater heads allowed the accumulation of acidic, organic-rich soils and chemically aggressive waters that percolated down to Paleogene carbonates via localized karst features. (4) After sufficient subsurface dissolution, the Paleogene carbonates collapsed, causing disruption and deformation of overlying strata. The seismic profiles document an episodic, vertically progressive karst that allows localized vertical leakage through the clay-confining units. The spatial and temporal karst distribution is a result of deposition of sediments with different permeabilities during high sea levels and enhanced karst dissolution during low sea levels. Recent decreases in the potentiometric elevation of the Floridan Aquifer System simulates a sea-level lowstand, suggesting that karst dissolution will increase in frequency and magnitude

GEOLOGY AND KARST GEOMORPHOLOGY OF SAN-SALVADOR ISLAND, BAHAMAS, 1995, Mylroie J. E. , Carew J. L. ,
The exposed carbonates of the Bahamas consist of late Quaternary limestones that were deposited during glacio-eustatic highstands of sea level. Each highstand event produced transgressive-phase, stillstand-phase, and regressive-phase units. Because of slow platform subsidence, Pleistocene carbonates deposited on highstands prior to the last interglacial (oxygen isotope substage 5e, circa 125,000 years ago) are represented solely by eolianites. The Owl's Hole Formation comprises these eolianites, which are generally fossiliferous pelsparites. The deposits of the last interglacial form the Grotto Beach Formation, and contain a complete sequence of subtidal intertidal and eolian carbonates. These deposits are predominantly oolitic. Holocene deposits are represented by the Rice Bay Formation, which consists of intertidal and eolian pelsparites deposited during the transgressive-phase and stillstand-phase of the current sea-level highstand. The three formations are separated from one another by well-developed terra-rossa paleosols or other erosion surfaces that formed predominantly during intervening sea-level lowstands. The karst landforms of San Salvador consist of karren, depressions, caves, and blue holes. Karren are small-scale dissolutional etchings on exposed and soil-covered bedrock that grade downward into the epikarst, the system of tubes and holes that drain the bedrock surface. Depressions are constructional features, such as swales between eolian ridges, but they have been dissolutionally maintained. Pit caves are vertical voids in the vadose zone that link the epikarst to the water table. Flank margin caves are horizontal voids that formed in the distal margin of a past fresh-water lens; whereas banana holes are horizontal voids that developed at the top of a past fresh-water lens, landward of the lens margin. Lake drains are conduits that connect some flooded depressions to the sea. Blue holes are flooded vertical shafts, of polygenetic origin, that may lead into caves systems at depth. The paleokarst of San Salvador is represented by flank margin caves and banana holes formed in a past fresh-water lens elevated by the last interglacial sea-level highstand, and by epikarst buried under paleosols formed during sea-level lowstands. Both carbonate deposition and its subsequent karstification is controlled by glacio-eustatic sea-level position. On San Salvador, the geographic isolation of the island, its small size, and the rapidity of past sea level changes have placed major constraints on the production of the paleokarst

BLUE HOLES - DEFINITION AND GENESIS, 1995, Mylroie J. E. , Carew J. L. , Moore A. I. ,
Blue holes are karst features that were initially described from Bahamian islands and banks, which have been documented for over 100 years. They are water-fined vertical openings in the carbonate rock that exhibit complex morphologies, ecologies, and water chemistries. Their deep blue color, for which they are named, is the result of their great depth, and they may lead to cave systems below sea level Blue holes are polygenetic in origin, having formed: by drowning of dissolutional sinkholes and shafts developed in the vadose zone; by phreatic dissolution along an ascending halocline; by progradational collapse upward from deep dissolution voids produced in the phreatic zone; or by fracture of the bank: margin. Blue holes are the cumulative result of carbonate deposition and dissolution cycles which have been controlled by Quaternary glacioeustatic fluctuations of sea-level. Blue holes have been widely studied during the past 30 years, and they have provided information regarding karst processes, global climate change, marine ecology, and carbonate geochemistry. The literature contains a wealth of references regarding blue holes that are at times misleading, and often confusing. To standardize use of the term blue hob, and to familiarize the scientific community with their nature, we herein define them as follows: ''Blue holes are subsurface voids that are developed in carbonate banks and islands; are open to the earth's surface; contain tidally-influenced waters of fresh, marine, or mixed chemistry; extend below sea level for a majority of their depth; and may provide access to submerged cave passages.'' Blue holes are found in two settings: ocean holes open directly into the present marine environment and usually contain marine water with tidal now; inland blue holes are isolated by present topography from surface marine conditions, and open directly onto the land surface or into an isolated pond or lake, and contain tidally-influenced water of a variety of chemistries from fresh to marine

Results 1 to 15 of 61
You probably didn't submit anything to search for