Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That stream bed is the bottom of a stream covered by water [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for secondary cave carbonate (Keyword) returned 3 results for the whole karstbase:
Cryogenic cave calcite from several Central European caves: age, carbon and oxygen isotopes and a genetic model, 2004, Zak Karel, Urban Jan, Cilek Vaclav, Hercman Helena,
Cryogenic cave calcite (CCC), formed by segregation of solutes during water freezing, was found in three Central European caves. This calcite type forms accumulations of loose calcite grains on cave floor. The calcite grains are of highly variable crystal morphology, and of sizes ranging from less than 1 mm to over 1 cm. The most typical feature is their accumulation as loose (uncemented) crystals. U-series dating indicates the formation of CCC in the studied caves during several climatic oscillations of the Weichselian (between 61 and 36 ka BP in the Chelsiowa Jama-Jaskinia Jaworznicka cave system in Poland, between 34 and 26 ka BP in the BUML Cave in the Czech Republic, and between 26 and 21 ka BP in the Stratenska Jaskyna cave system, Slovakia). At the time of CCC formation, the studied caves were lying in a periglacial zone.Detailed C and O stable isotope study of CCC samples revealed that slow water freezing under isotope equilibrium was the dominant formational process in the studied Polish and Czech caves. Significantly higher [delta]13C values of CCC in the Stratenska Jaskyna Cave indicate either water freezing in a more opened system with continuous CO2 escape (Rayleigh fractional separation), or participation of another CO2 source. The model of slow water freezing under isotope equilibrium is supported by isolated character of the caves having limited ventilation.In contrast, modern cryogenic cave calcite powders sampled directly on the ice surface of two recently iced caves in Slovakia with high ventilation showed much higher [delta]18O and [delta]13C data, similar to cryogenic calcites obtained in experimental rapid water freezing

Cryogenic cave carbonates from the Cold Wind Cave, Nzke Tatry Mountains, Slovakia: Extending the age range of cryogenic cave carbonate formation to the Saalian, 2009, k K. , Hercman H. , Orvoov M. , Ja?kov I.
Cold Wind Cave, located at elevations ranging between 1,600 and 1,700 m a. s. l. in the main range of the Nzke Tatry Mountains (Slovakia), is linked in origin with the adjacent Dead Bats Cave. Together, these caves form a major cave system located within a narrow tectonic slice of Triassic sediments. Both caves have undergone complex multiphase development. A system of sub-horizontal cave levels characterized by large, tunnel-like corridors was formed during the Tertiary, when elevation differences surrounding the cave were less pronounced than today. The central part of the Nzke Tatry Mountains, together with the cave systems, was uplifted during the Neogene and Lower Pleistocene, which changed the drainage pattern of the area completely. The formation of numerous steep-sloped vadose channels and widespread cave roof frost shattering characterized cave development throughout the Quaternary. In the Cold Wind Cave, extensive accumulations of loose, morphologically variable crystal aggregates of secondary cave carbonate ranging in size between less than 1 mm to about 35 mm was found on the surface of fallen limestone blocks. Based on the C and O stable isotope compositions of the carbonate (?13C: 0.72 to 6.34 , ?18O: 22.61 to 13.68 V-PDB) and the negative relation between ?13C and ?18O, the carbonate crystal aggregates are interpreted as being cryogenic cave carbonate (CCC). Published models suggest the formation of CCC in slowly freezing water pools, probably on the surface of cave ice, most probably during transitions from stadials to interstadials. Though the formation of these carbonates is likely one of the youngest events in the sequence of formation of cave sediments of the studied caves, the 230Th/234U ages of three samples (79.72.3, 104.02.9, and 180.06.3 ka) are the oldest so far obtained for CCC in Central Europe. This is the first description of CCC formation in one cave during two glacial periods (Saalian and Weichselian).

Cryogenic cave carbonates from the Cold Wind Cave, Nzke Tatry Mountains, Slovakia: Extending the age range of cryogenic cave carbonate formation to the Saalian, 2009, k K. , Hercman H. , Orvoov M. , Jač, Kov I.

Cold Wind Cave, located at elevations ranging between 1,600 and 1,700 m a. s. l. in the main range of the NÃzke Tatry Mountains (Slovakia), is linked in origin with the adjacent Dead Bats Cave. Together, these caves form a major cave system located within a narrow tectonic slice of Triassic sediments. Both caves have undergone complex multiphase development. A system of sub-horizontal cave levels characterized by large, tunnel-like corridors was formed during the Tertiary, when elevation differences surrounding the cave were less pronounced than today. The central part of the NÃzke Tatry Mountains, together with the cave systems, was uplifted during the Neogene and Lower Pleistocene, which changed the drainage pattern of the area completely. The formation of numerous steep-sloped vadose channels and widespread cave roof frost shattering characterized cave development throughout the Quaternary. In the Cold Wind Cave, extensive accumulations of loose, morphologically variable crystal aggregates of secondary cave carbonate ranging in size between less than 1 mm to about 35 mm was found on the surface of fallen limestone blocks. Based on the C and O stable isotope compositions of the carbonate (δ13C: 0.72 to 6.34 ‰, δ18O: –22.61 to –13.68 ‰ V-PDB) and the negative relation between δ13C and δ18O, the carbonate crystal aggregates are interpreted as being cryogenic cave carbonate (CCC). Published models suggest the formation of CCC in slowly freezing water pools, probably on the surface of cave ice, most probably during transitions from stadials to interstadials. Though the formation of these carbonates is likely one of the youngest events in the sequence of formation of cave sediments of the studied caves, the 230Th/234U ages of three samples (79.7±2.3, 104.0±2.9, and 180.0±6.3 ka) are the oldest so far obtained for CCC in Central Europe. This is the first description of CCC formation in one cave during two glacial periods (Saalian and Weichselian).


Results 1 to 3 of 3
You probably didn't submit anything to search for