Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That water-borne disease is disease spread by organic contaminants contained in the water supply [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for simulations (Keyword) returned 72 results for the whole karstbase:
Showing 1 to 15 of 72
Assessing the importance of conduit geometry and physical parameters in karst systems using the storm water management model (SWMM), , Peterson Eric W. , Wicks Carol M. ,
SummaryQuestions about the importance of conduit geometry and about the values of hydraulic parameters in controlling ground-water flow and solute transport through karstic aquifers have remained largely speculative. One goal of this project was to assess the role that the conduit geometry and the hydraulic parameters have on controlling transport dynamics within karstic aquifers. The storm water management model (SWMM) was applied to the Devil's Icebox-Connor's Cave System in central Missouri, USA. Simulations with incremental changes to conduit geometry or hydraulic parameters were performed with the output compared to a calibrated baseline model. Ten percent changes in the length or width of a conduit produced statistically significant different fluid flow responses. The model exhibited minimal sensitivity to slope and infiltration rates; however, slight changes in Manning's roughness coefficient can highly alter the simulated output.Traditionally, the difference in flow dynamics between karstified aquifers and porous media aquifers has led to the idea that modeling of karst aquifers is more difficult and less precise than modeling of porous media aquifers. When evaluated against models for porous media aquifers, SWMM produced results that were as accurate (10% error compared to basecase). In addition, SWMM has the advantage of providing data about local flow. While SWMM may be an appropriate modeling technique for some karstic aquifers, SWMM should not be viewed as a universal solution to modeling karst systems

A New Equation Solver for Modeling Turbulent Flow in Coupled Matrix‐Conduit Flow Models, ,

Karst aquifers represent dual flow systems consisting of a highly conductive conduit system embedded in a less permeable rock matrix. Hybrid models iteratively coupling both flow systems generally consume much time, especially because of the nonlinearity of turbulent conduit flow. To reduce calculation times compared to those of existing approaches, a new iterative equation solver for the conduit system is developed based on an approximated Newton–Raphson expression and a Gauß–Seidel or successive over-relaxation scheme with a single iteration step at the innermost level. It is implemented and tested in the research code CAVE but should be easily adaptable to similar models such as the Conduit Flow Process for MODFLOW-2005. It substantially reduces the computational effort as demonstrated by steady-state benchmark scenarios as well as by transient karst genesis simulations. Water balance errors are found to be acceptable in most of the test cases. However, the performance and accuracy may deteriorate under unfavorable conditions such as sudden, strong changes of the flow field at some stages of the karst genesis simulations.

Do you want to read the rest of this publication?


Rospo Mare field is located in the Adriatic Sea, 20 km of the Abruzzes coast, at an average depth of 80 m. The reservoir is a karst which is essentially conductive; yet unlike a conventional porous medium, it cannot be simulated by the usual tools and techniques of reservoir simulation. Therefore, several approaches were used to describe the flow mechanism during the production period in greater detail. The first approach consisted of generating three-dimensional images which were constrained by both petrophysical and geological factors and then, using up-scaling techniques, obtaining the equivalent permeabilities (scalar or tensorial) of grid blocks located in different zones within the karst. This approach shows that within the infiltration zone it is possible, whatever the scale, to find an equivalent homogeneous porous medium; on the other hand, within the epikarst this equivalent medium does not exist below pluridecametric dimensions. Thus it is impossible to study the sweeping mechanism on a small scale, so we must use a deterministic model which describes the network of pipes in the compact matrix, in which a waterflood is simulated by means of a conform finite-element model. This constituted the second approach. The third and final approach consisted of inventing a system of equations to analytically solve the pressure field in a network of vertical pipes which are intersected by a production drain and submitted to a strong bottom water-drive. This model allows us to simulate the water-oil contact rise within the reservoir and study the flows depending on the constraints applied to the production well. It appears that cross flows occur in the pipes even during the production period

Searching for extinction/recovery gradients: the Frasnian-Famennian interval, Mokra Section, Moravia, central Europe, 1996, Cejchan P, Hladil J,
A series of ancient seafloors colonized by diverse organisms has been documented from the Upper Devonian rocks of the Western Mokra Quarry. Situated in the southern tectonic closure of the Moravian Karst, the Frasnian-Famennian shallow carbonate ramps exhibit both Rhenish and Ukrainian affinities. Reconstruction of palaeo-sea floor horizons results in a series of 28 quadrats sufficient for further evaluation. Eighty-five taxa involved were scrutinized for abundance, occupied area, skeletal mass production and biomass production. The aim of the study was to determine whether the observed sequence of quadrats can be distinguished from a random one, and to discover any possible unidimensional gradient as a latent control. Monte Carlo simulations and a graph theoretical approach were utilized. Although the raw data seemed chaotic, the simulations demonstrated the observed sequence is not random. A significant influence of a hidden control is thus suggested. Fifteen characteristics of quadrats (e.g. diversity, number of taxa, vertical stratification of community, number of patches) were utilized for final interpretation. The gradient reconstructed by TSP algorithm reveals a significant crisis within the uppermost part of the Amphipora-bearing limestone

Mixed transport reaction control of gypsum dissolution kinetics in aqueous solutions and initiation of gypsum karst, 1997, Raines M. A. , Dewers T. A. ,
Experiments with gypsum in aqueous solutions at 25 degrees C, low ionic strengths, and a range of saturation states indicate a mixed surface reaction and diffusional transport control of gypsum dissolution kinetics. Dissolution rates were determined in a mixed flow/rotating disc reactor operating under steady-state conditions, in which polished gypsum discs were rotated at constant speed and reactant solutions were continuously fed into the reactor. Rates increase with velocity of spin under laminar conditions (low rates of spin), but increase asymptotically to a constant rate as turbulent conditions develop with increasing spin velocity, experiencing a small jump in magnitude across the laminar-turbulent transition. A Linear dependence of rates on the square root of spin velocity in the laminar regime is consistent with rates being limited by transport through a hydrodynamic boundary layer. The increase in rate with onset of turbulence accompanies a near discontinuous drop in hydrodynamic boundary layer thickness across the transition. A relative independence of rates on spinning velocity in the turbulent regime plus a nonlinear dependence of rates on saturation state are factors consistent with surface reaction control. Together these behaviors implicate a 'mixed' transport and reaction control of gypsum dissolution kinetics. A rate law which combines both kinetic mechanisms and can reproduce experimental results under laminar flow conditions is proposed as follows: R = k(t) {1 - Omega(b)() zeta [1 - (1 2(1 - Omega(b)())(1/2)]} where k(t) is the rate coefficient for transport control, and Omega(b)() is the mean ionic saturation state of the bulk fluid. The dimensionless parameter zeta(=Dm(eq)()/2 delta k() where m(eq)() = mean ionic molal equilibrium concentration, D is the diffusion coefficient through the hydrodynamic boundary layer, delta equals the boundary layer thickness and k() is the rate constant for surface reaction control) indicates which process, transport or surface reaction, dominates, and is sensitive to the hydrodynamic conditions in the reactor. For the range of conditions used in our experiments, zeta varies from about 1.4 to 4.5. Rates of gypsum dissolution were also determined in situ in a cavern system in the Permian Blaine Formation, southwestern Oklahoma. Although the flow conditions in the caverns were not determinable, there is good agreement between lab- and field-determined rates in that field rate magnitudes lie within a range of rates determined experimentally under zero to low spin velocities A numerical model coupling fluid flow and gypsum reaction in an idealized circular conduit is used to estimate the distance which undersaturated solutions will travel into small incipient conduits before saturation is achieved. Simulations of conduit wall dissolution showed-member behaviors of conduit formation and surface denudation that depend on flow boundary conditions (constant discharge or constant hydraulic gradient and initial conduit radius. Surface-control of dissolution rates. which becomes more influential with higher fluid flow velocity, has the effect that rate decrease more slowly as saturation is approached than otherwise would occur if rates were controlled by transport alone. This has the effect that reactive solutions can penetrate much farther into gypsum-bearing karst conduits than heretofore thought possible, influencing timing and mechanism of karst development as well as stability of engineered structures above karst terrain

Risk assessment methodology for karst aquifers .2. Solute-transport modeling, 1997, Field Ms,
Ground-water flow and solute-transport simulation modeling are major components of most exposure and risk assessments of contaminated aquifers. Model simulations provide information on the spatial and temporal distributions of contaminants in subsurface media but are difficult to apply to karst aquifers in which conduit flow is important. Ground-water flow and solute transport in karst conduits typically display rapid-flow velocities, turbulent-flow regimes, concentrated pollutant-mass discharge, and exhibit open-channel or closed-conduit how Conventional groundwater models, dependent on the applicability of Darcy's law, are inappropriate when applied to karst aquifers because of the (1) nonapplicability of Darcian-flow parameters, (2) typically nonlaminar flow regime, and (3) inability to locate the karst conduits through which most flow and contaminant transport occurs. Surface-water flow and solute-transport models conditioned on a set of parameters determined empirically from quantitative ground-water tracing studies may be effectively used to render fate-and-transport values of contaminants in karst conduits. Hydraulic-flow and geometric parameters developed in a companion paper were used in the surface-water model, TOXI5, to simulate hypothetical slug and continuous-source releases of ethylbenzene in a karst conduit. TOXI5 simulation results showed considerable improvement for predicted ethylbenzene-transport rates and concentrations over qualitative tracing and analytical ground-water model results. Ethylbenzene concentrations predicted by TOXI5 simulations were evaluated in exposure and risk assessment models

Numerical versus statistical modelling of natural response of a karst hydrogeological system, 1997, Eisenlohr L, Bouzelboudjen M, Kiraly L, Rossier Y,
Structural and hydrodynamic characteristics of karst aquifers are mostly deduced from studies of global responses of karst springs (hydrographs, chemical or isotopic composition). In this case, global response is often used to make inferences with respect to infiltration and ground water How processes as well as on the hydrodynamic parameters. Obviously, the direct verification of these inferences is very difficult. We have used an indirect method of verification, introducing well defined theoretical karst structures into a finite element model and then analysing the simulated global response according to the currently accepted interpretation schemes. As we know what we are introducing into the numeric model, the consistency of the interpretation may be checked immediately. The results obtained in the hydrogeological study of two karst basins in the Swiss Jura and from 2-D and 3-D numerical simulations show the difficulty of finding structural parameters and hydrodynamic behaviour from statistical methods alone, i.e. correlation analyses discharge-discharge and precipitation-discharge. In effect, our first results show that the form of the correlograms depends on several factors besides the structure of the karst aquifer: (i) on the form of the floods. in other words the contrast between quick Row and base How, (ii) on the frequency of hydrological events during the period analysed and (iii) on the type of infiltration processes, in other words the ratio of diffuse infiltration to concentrated information. Obviously, the variability of a karst hydrograph is a result of a combination of these factors. Distinction between them is not always possible on hydrographs, and therefore on correlations (discharge-discharge and precipitation-discharge). (C) 1997 Elsevier Science B.V

Evolution of size distributions of natural particles during aggregation: modelling versus field results, 1998, Atteia O,
In this paper a discretized model simulating aggregation of size distributions jointly with sedimentation and transport is presented. A review of the current theory provides some helpful hints about the relative importance of each aggregation process, i.e. Brownian motion, shear flow and differential sedimentation, which are tested by using collision efficiency factors. The novel aspect of the model arises from the use of a varying mean particle diameter in each size class. This allows both non-steady-state and steady-state calculations and free choice of size classes. A comparison with a classical approach shows the exactitude of the results and the improvment obtained for several cases. The simulations gave a family of curves characterized by three parts corresponding to peri-, and orthokinetic aggregation and to sedimentation. The role of collision effciency is crucial in the relative extent of each part of the size distribution. The comparison with a series of data from a karst spring showed that the model was able to fit most of the particle size distributions using significant values of each parameter. This allowed information about particle aggregation and transport within a non-accessible aquifer to be inferred.

Influence of aperture variability on dissolutional growth of fissures in karst formations, 1998, Hanna R. B. , Rajaram H. ,
The influence of aperture variability on dissolutional growth of fissures is investigated on the basis of two-dimensional numerical simulations. The logarithm of the fissure aperture before dissolution begins is modeled as a Gaussian stationary isotropic random field. The initial phase of dissolutional growth is studied up to the time when turbulent flow first occurs at a point within the fissure (the breakthrough time). The breakthrough time in variable aperture fissures is smaller than that in uniform fissures and decreases as the coefficient of variation of the aperture field (sigma/mu) increases. In comparing uniform and variable aperture fissures in limestone, the breakthrough time with sigma/mu = 0.1 is about a factor of 2 smaller than that in a uniform fissure. The breakthrough time is reduced by about an order of magnitude with sigma/mu = 2.0. The mechanism leading to reduced breakthrough times is the focusing of flow into preferential flow channels which are enlarged at a faster rate than the surrounding regions of slower flow. Dissolution channels are narrower and more tortuous as sigma/mu. increases. Investigations of the influence of reaction rate reveal that the influence of aperture variability is more pronounced in rapidly dissolving rock. In uniform fissures in rapidly dissolving minerals, breakthrough times are very long since water becomes saturated with respect to the mineral within a short distance of the entrance to the flow path. However, in variable aperture fissures, breakthrough occurs rapidly because of selective growth along preferential flow channels, which progressively capture larger fractions of the total flow. These results partly explain why conduits develop rapidly in gypsum, although previous one-dimensional studies suggest that conduit growth will not occur

Flow pattern variability in natural fracture intersections, 1999, Kosakowski G. , Berkowitz B. ,
We use numerical simulations to examine the variability of flow patterns in representative fracture intersection geometries. In contrast to existing studies of perfectly orthogonal intersections, we demonstrate that more realistic geometries lead to a rich spectrum of flow patterns. Moreover, numerical solutions of the Navier-Stokes equations in these fracture intersections indicate that non-linear inertial effects become important for Reynolds numbers as tow as 1-100. Such Reynolds numbers often exist in naturally fractured formations, particularly in karst systems and in the vicinity of wells during pump tests

Simulated effect of vadose infiltration on water levels in the Northern Guam Lens Aquifer, 2000, Contractor Dn, Jenson Jw,
Regional-scale hydrology of the fresh water lens in the Northern Guam Lens Aquifer has been simulated in the past using a finite element, sharp interface computer model, SWIG2D. Systematic differences exist between observed and computed water levels. Computed seasonal peak water levels are higher, and the computed seasonal lows are lower than the respective observed levels. It is hypothesized that vadose storage must store a substantial amount of water during the wet season and release it gradually into the lens during the dry season. Flow through the vadose zone was simulated with a one-dimensional finite element, unsaturated flow program UNSATID, in which the van Genuchten model is used to characterize unsaturated diffuse flow through the matrix of the vadose zone. An additional parameter (SINK) was added to the van Genuchten set to account for rapid infiltration down open pathways (fractures) associated with the closed depressions of the karst terrain. A global-optimization technique (Shuffled Complex Evolution or SCE-UA Method) was used to obtain the parameters that minimized the difference between simulated and observed water levels. Simulations incorporating the van Genuchten model were accomplished by combining the two programs, UNSATID and SWIG2D, into a single program. The sum-of-squared-errors (SSE) between computed and observed water levels in four observation wells was minimized using SCE-UA, reducing the arithmetically averaged SSE of the four wells by 30% compared with the SSE obtained when the vadose zone was not modeled. These results suggest that vadose storage is significant. On the other hand, the fact that the best fit obtained with an optimum parameter set was able to reduce the SSE by no more than 30% suggests that additional phenomena have yet to be accounted for to mon fully explain differences between simulated and observed well water levels. (C) 2000 Elsevier Science B.V. All rights reserved

Climate-change impacts in a regional karst aquifer, Texas, USA, 2000, Loaiciga H. A. , Maidment D. R. , Valdes J. B. ,
Climate-change scenarios were created from scaling factors derived from several general circulation models to assess the likely impacts of aquifer pumping on the water resources of the Edwards Balcones Fault Zone (BFZ) aquifer, Texas, one of the largest aquifer systems in the United States. Historical climatic time series in periods of extreme water shortage (1947-1959), near-average recharge (1978-1989), and above-average recharge (1975-1990) were scaled to 2 x CO2 conditions to create aquifer recharge scenarios in a wanner climate. Several pumping scenarios were combined with 2 x CO2 climate scenarios to assess the sensitivity of water resources impacts to human-induced stresses on the Edwards BFZ aquifer. The 2 x CO2 climate change scenarios were linked to surface hydrology and used to drive aquifer dynamics with alternative numerical simulation models calibrated to the Edwards BFZ aquifer, Aquifer simulations indicate that, given the predicted growth and water demand in the Edwards BFZ aquifer region, the aquifer's ground water resources appear threatened under 2 x CO2 climate scenarios. Our simulations indicate that 2 x CO2 climatic conditions could exacerbate negative impacts and water shortages in the Edwards BFZ aquifer even if pumping does not increase above its present average level. The historical evidence and the results of this article indicate that without proper consideration to variations in aquifer recharge and sound pumping strategies, the water resources of the Edwards BFZ aquifer could be severely impacted under a warmer climate. (C) 2000 Elsevier Science B.V. All rights reserved

Dispersion, retardation and scale effect in tracer breakthrough curves in karst conduits, 2001, Hauns M. , Jeannin P. Y. , Atteia O. ,
Characteristics of tracer breakthrough curves in karst conduits are examined and compared to results generated using well known equations applied to porous media. The equations of the turbulent dispersion lead to a transport equation similar to the classical advection-dispersion equation for porous media with a slightly different meaning for the dispersion and advection terms. For investigations at the meter length scale, we used a three-dimensional (3-D) computational fluid dynamics (CFD) code to simulate tracer transport in several conduit geometries. The simulations show that turbulent dispersion can be considered as Fickian at a meter length scale of observation and that turbulent dispersivity depends linearly on the average flow velocity in the range of observed velocities. The simulations show that pools induce retardation (tailing of the breakthrough curve) due to flow reversal in eddies. Retardation has a complex relationship with the pool dimensions. Irregularity of the conduit cross-section along the investigated section clearly produces retardation. This is obvious at the meter length scale but may still be visible 10(3) m downstream from the injection point. A transfer function ('black box') approach is used for upscaling from a meter to a 10(3) m length scale. Before applying it to natural examples, the transfer function approach is tested by using the 3-D CFD code and appears to perform well. Several tests, based on numerical, laboratory and held experiments, of conduit segments which includes various dispersive features indicate that retardation tends to be transformed to symmetrical dispersion with distance. At large scale it appears that the dominant dispersion factor is the irregularity of the conduit geometry, which produces an increase in dispersivity with distance ('scale effect'), similar to that observed in porous media. In conclusion this suggests that retardation and high dispersion provide evidence of an irregular conduit, including either numerous dispersive features or large-scale ones (pools for example). Conversely no retardation and moderate dispersion (close to 0.012 m) must result from turbulent Row through a smooth conduit. (C) 2001 Elsevier Science B.V. All rights reserved

Coastal karst springs in the Mediterranean basin : study of the mechanisms of saline pollution at the Almyros spring (Crete), observations and modelling, 2002, Arfib B, De Marsily G, Ganoulis J,
Variations in salinity and flow rate in the aerial, naturally salty spring of Almyros of Heraklion on Crete were monitored during two hydrological cycles. We describe the functioning of the coastal karstic system of the Almyros and show the influence of the duality of the flow in the karst (conduits and fractured matrix) on the quality of the water resource in the coastal area. A mechanism of saltwater intrusion into this highly heterogeneous system is proposed and validated with a hydraulic mathematical model, which describes the observations remarkably well. Introduction. - Fresh groundwater is a precious resource in many coastal regions, for drinking water supply, either to complement surface water resources, or when such resources are polluted or unavailable in the dry season. But coastal groundwater is fragile, and its exploitation must be made with care to prevent saltwater intrusion as a result of withdrawal, for any aquifer type, porous, fractured or karstic. In karstic zones, the problem is very complex because of the heterogeneous nature of the karst, which makes it difficult to use the concept of representative elementary volume developed for porous or densely fractured systems. The karstic conduits focus the major part of the flow in preferential paths, where the water velocity is high. In coastal systems, these conduits have also an effect on the distribution of the saline intrusion. As was shown e.g. by Moore et al. [1992] and Howard and Mullings [1996], both freshwater and salt-water flow along the fractures and conduits to reach the mixing zone, or the zone where these fluids are superposed in a dynamic equilibrium because of their differences in density ; but the dynamics of such a saltwater intrusion are generally unknown and not represented in models. Such coastal karstic systems are intensely studied at this moment in the Mediterranean region [Gilli, 1999], both as above sea-level or underwater springs, for potential use in areas where this resource would be of great value for economic development. This article discusses the freshwater-saltwater exchange mechanisms in the karstic aquifer of the Almyros of Heraklion aquifer (Crete) and explains the salinity variations observed in the spring. First, the general hydrogeology of the study site is described, then the functioning of the spring : a main conduit drains the freshwater over several kilometres and passes at depth through a zone where seawater is naturally present. The matrix-conduit exchanges are the result of pressure differences between the two media. These processes are represented in a mathematical model that confirms their relevance. General hydrogeology of the studied site. - The karstic coastal system of the Almyros of Heraklion (Crete) covers 300 km2 in the Ida massif whose borders are a main detachment fault, and the Sea of Crete in the north, the Psiloritis massif (highest summit at 2,456 m) in the south and west, and the collapsed basin of Heraklion filled in by mainly neo-geneous marl sediments in the east. The watershed basin consists of the two lower units of characteristic overthrust formations of Crete (fig. 1) : the Cretaceous Plattenkalk and the Cretaceous Tripolitza limestones. The two limestone formations are locally separated by interbedded flysch or phyllade units that form an impervious layer [Bonneau et al., 1977 ; Fassoulas, 1999] and may lead to different flow behaviour within the two karstic formations. Neo-tectonic activity has dissected these formations with large faults and fractures. The present-day climate in Crete is of Mediterranean mountain type, with heavy rain storms and snow on the summits in winter. Rainfall is unevenly distributed over the year, with 80 % of the annual total between October and March and a year-to-year average of 1,370 mm. The flow rate of the spring is high during the whole hydrologic cycle, with a minimum in summer on the order of 3 m3.s-1 and peak flow in winter reaching up to 40 m3.s -1. The water is brackish during low flow, up to a chloride content of 6 g.l-1, i.e. 23 % of seawater, but it is fresh during floods, when the flow rate exceeds 15 m3.s-1. During the 1999-2000 and 2000-2001 hydrologic cycles, the water was fresh during 14 and 31 days, respectively. The water temperature is high and varies very little during the year (see table I). In the areas of Keri and Tilissos (fig. 1), immediately south of the spring, the city of Heraklion extracts water from the karstic system through a series of 15 wells with depth reaching 50 to 100 m below sea level. Initially, when the wells were drilled, the water was fresh, but nowadays the salinity rises progressively, but unequally from well to well (fig. 2). The relatively constant temperatures and salinities of the wells, during the hydrological cycle, contrast with the large salinity variations at the spring (fig. 2 and table I). They show that the karstic system is complex and comprises different compartments, where each aquifer unit reacts to its individual pressures (pumping, rainfall) according to its own hydrodynamic characteristics [Arfib et al., 2000]. The Almyros spring seems disconnected from the surrounding aquifer and behaves differently from that which feeds the wells (upper Tripolitza limestone). It is recharged by fresh water from the mountains, which descends to depths where it probably acquires its salinity. The spring would thus be the largest resource of the area, if it was possible to prevent its pollution by seawater. A general functioning sketch is proposed (fig. 3), which includes the different geological units of interest. Identification of the functioning of the Almyros spring through monitoring of physical and chemical parameters. - The functioning of the aquifer system of the Almyros spring was analysed by monitoring, over two hydrological cycles, the level of the spring, the discharge, the electric conductivity and the temperature recorded at a 30 min time interval. In the centre of the watershed basin, a meteorological station at an altitude of 800 m measures and records at a 30 min time interval the air temperature, rainfall, relative humidity, wind velocity and direction ; moreover, an automatic rain gauge is installed in the northern part of the basin at an altitude of 500 m. The winter floods follow the rhythm of the rainfall with strong flow-rate variations. In contrast, the summer and autumn are long periods of drought (fig. 7). The flow rate increases a few hours after each rainfall event ; the water salinity decreases in inverse proportion to the flow rate a few hours to a few days later. Observations showed that the water volume discharged at the Almyros spring between the beginning of the flow rate increase and the beginning of the salinity decrease is quite constant, around 770,000 m3 (fig. 4) for any value of the flow rate, of the salinity and also of the initial or final rainfall rates. To determine this constant volume was of the upmost importance when analyzing the functioning of the Almyros spring. The lag illustrates the differences between the pressure wave that moves almost instantaneously through the karst conduit and causes an immediate flow rate increase after rainfall and the movement of the water molecules (transfer of matter) that arrives with a time lag proportionate to the length of the travel distance. The variation of the salinity with the flow rate acts as a tracer and gives a direct indication of the distance between the outlet and the seawater entrance point into the conduit. In the case of the Almyros, the constant volume of expelled water indicates that sea-water intrusion occurs in a portion of the conduit situated several kilometres away from the spring (table II), probably inland, with no subsequent sideways exchange in the part of the gallery leading up to the spring. As the lag between the flow rate and the salinity recorded at the spring is constant, one can correct the salinity value by taking, at each time step, with a given flow rate, the salinity value measured after the expulsion of 770,000 m3 at the spring, which transforms the output of the system so as to put the pressure waves and the matter transfer in phase [Arfib, 2001]. After this correction, the saline flux at the spring, equal to the flow rate multiplied by the corrected salinity, indicates the amount of sea-water in the total flow. This flux varies in inverse proportion to the total flow rate in the high-flow period and the beginning of the low-flow period, thereby demonstrating that the salinity decrease in the spring is not simply a dilution effect (fig. 5). The relationship that exists between flow rate and corrected salinity provides the additional information needed to build the conceptual model of the functioning of the part of the Almyros of Heraklion aquifer that communicates with the spring. Freshwater from the Psiloritis mountains feeds the Almyros spring. It circulates through a main karst conduit that descends deep into the aquifer and crosses a zone naturally invaded by seawater several kilometers from the spring. The seawater enters the conduit and the resulting brackish water is then transported to the spring without any further change in salinity. The conduit-matrix and matrix-conduit exchanges are governed by the head differences in the two media. Mathematical modelling of seawater intrusion into a karst conduit Method. - The functioning pattern exposed above shows that such a system cannot be treated as an equivalent porous medium and highlights the influence of heterogeneous structures such as karst conduits on the quantity and quality of water resources. Our model is called SWIKAC (Salt Water Intrusion in Karst Conduits), written in Matlab(R). It is a 1 D mixing-cell type model with an explicit finite-difference calculation. This numerical method has already been used to simulate flow and transport in porous [e.g. Bajracharya and Barry, 1994 ; Van Ommen, 1985] and karst media [e.g. Bauer et al., 1999 ; Liedl and Sauter, 1998 ; Tezcan, 1998]. It reduces the aquifer to a single circular conduit surrounded by a matrix equivalent to a homogeneous porous medium where pressure and salinity conditions are in relation with sea-water. The conduit is fed by freshwater at its upstream end and seawater penetrates through its walls over the length L (fig. 6) at a rate given by an equation based on the Dupuit-Forchheimer solution and the method of images. The model calculates, in each mesh of the conduit and at each time step, the head in conditions of turbulent flow with the Darcy-Weisbach equation. The head loss coefficient {lambda} is calculated by Louis' formula for turbulent flow of non-parallel liquid streams [Jeannin, 2001 ; Jeannin and Marechal, 1995]. The fitting of the model is intended to simulate the chloride concentration at the spring for a given matrix permeability (K), depth (P) and conduit diameter (D) while varying its length (L) and its relative roughness (kr). The spring flow rates are the measured ones ; at present, the model is not meant to predict the flow rate of the spring but only to explain its salinity variations. Results and discussion. - The simulations of chloride concentrations were made in the period from September 1999 to May 2001. The depth of the horizontal conduit where matrix-conduit exchanges occur was tested down to 800 m below sea level. The diameter of the conduit varied between 10 and 20 m, which is larger than that observed by divers close to the spring but plausible for the seawater intrusion zone. The average hydraulic conductivity of the equivalent continuous matrix was estimated at 10-4 m/s. A higher value (10-3 m/s) was tested and found to be possible since the fractured limestone in the intrusion zone may locally be more permeable but a smaller value (10-5 m/s) produces an unrealistic length (L) of the saline intrusion zone (over 15 km). For each combination of hydraulic conductivity, diameter and depth there is one set of L (length) and kr (relative roughness) calibration parameters. All combinations for a depth of 400 m or more produce practically equivalent results, close to the measured values. When the depth of the conduit is less than 400 m, the simulated salinity is always too high. Figure 7 shows results for a depth of 500 m, a diameter of 15 m and a hydraulic conductivity of 10-4 m/s. The length of the saltwater intrusion zone is then 1,320 m, 4,350 m away from the spring and the relative roughness coefficient is 1.1. All the simulations (table II) need a very high relative roughness coefficient which may be interpreted as an equivalent coefficient that takes into account the heavy head losses by friction and the variations of the conduit dimensions which, locally, cause great head losses. The model simulates very well the general shape of the salinity curve and the succession of high water levels in the Almyros spring but two periods are poorly described due to the simplicity of the model. They are (1) the period following strong freshwater floods, where the model does not account for the expulsion of freshwater outside the conduit and the return of this freshwater which dilutes the tail of the flood and (2) the end of the low-water period when the measured flux of chlorides falls unexpectedly (fig. 5), which might be explained by density stratification phenomena of freshwater-saltwater in the conduit (as observed in the karst gallery of Port-Miou near Cassis, France [Potie and Ricour, 1974]), an aspect that the model does not take into account. Conclusions. - The good results produced by the model confirm the proposed functioning pattern of the spring. The regulation of the saline intrusion occurs over a limited area at depth, through the action of the pressure differences between the fractured limestone continuous matrix with its natural saline intrusion and a karst conduit carrying water that is first fresh then brackish up to the Almyros spring. The depth of the horizontal conduit is more than 400 m. An attempt at raising the water level at the spring, with a concrete dam, made in 1987, which was also modelled, indicates that the real depth is around 500 m but the poor quality of these data requires new tests to be made before any firm conclusions on the exact depth of the conduit can be drawn. The Almyros spring is a particularly favorable for observing the exchanges in the conduit network for which it is the direct outlet but it is not representative of the surrounding area. To sustainably manage the water in this region, it is essential to change the present working of the wells in order to limit the irreversible saline intrusion into the terrain of the upper aquifers. It seems possible to exploit the spring directly if the level of its outlet is raised. This would reduce the salinity in the spring to almost zero in all seasons by increasing the head in the conduit. In its present state of calibration, the model calculates a height on the order of 15 m for obtaining freshwater at the spring throughout the year, but real tests with the existing dam are needed to quantify any flow-rate losses or functional changes when there is continual overpressure in the system. The cause of the development of this karstic conduit at such a great depth could be the lowering of the sea level during the Messinian [Clauzon et al., 1996], or recent tectonic movements

Efficient hydrologic tracer-test design for tracer-mass estimation and sample-collection frequency, 2. Experimental results, 2002, Field Ms,
Effective tracer-test design requires that the likely results be predicted in advance of test initiation to ensure tracer-test success. EHTD-predicted breakthrough curves (BTCs) for various hydrological conditions were compared with measured BTCs obtained from actual tracer tests. The hydrological conditions for the tracer tests ranged from flowing streams to porous-media systems. Tracer tests evaluated included flowing streams tracer tests conducted in small and large surface-water streams, a karst solution conduit, and a glacial-meltwater stream and porous-media systems conducted as natural-gradient, forced-gradient, injection-withdrawal, and recirculation tracer tests. Comparisons between the actual tracer tests and the predicted results showed that tracer breakthrough, hydraulic characteristics, and sample-collection frequency may be forecasted sufficiently well in most instances as to facilitate good tracer-test design. Comparisons were generally improved by including tracer decay and/or retardation in the simulations. Inclusion of tracer decay in the simulations also tended to require an increase in set average tracer concentration to facilitate matching peak concentrations in the measured BTCs, however. Both nonreactive tracer and reactive tracer predictions produced recommended sample-collection frequencies that would adequately define the actual BTCs, but estimated tracer-mass estimates were less precise

Results 1 to 15 of 72
You probably didn't submit anything to search for