Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That percolation; percolation water is 1. ground water moving slowly through the microfissure network of a limestone, most of which eventually joins a major cave conduit and flows more rapidly. in most environments percolation water enters the limestone through a soil cover. it is therefore high in carbon dioxide and has a major influence on limestone dissolution and later redeposition of calcite speleothems. percolation water accounts for most of the storage in a limestone aquifer, responds slowly to flooding in comparison to sinkhole water, and is normally of high enough quality to provide a drinking-water supply [9]. 2. the movement in laminar flow under hydrostatic pressure of water through the interconnected, saturated interstices of rock or soil, excluding movement through large openings such as caves and solution channels. 3. the downward movement of water through the unsaturated zone [22]. 4.the downward flow of water in saturated or nearly saturated porous medium at hydraulic gradients of the order of 1.0 or less [22]. 5. the movement of water through saturated interior pore space [16]. synonym: seepage water.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for sinkhole lake (Keyword) returned 7 results for the whole karstbase:
Thermal stratification and annual heat budget of a Florida sinkhole lake, 1972, Nordlie Frank,

Leakage from sinkhole lakes significantly influences recharge to the Upper Floridan aquifer in poorly confined sediments in northern Florida. Environmental isotopes (oxygen 18, deuterium, and tritium), chlorofluorocarbons (CFCs: CFC-11, CCl3F; CFC-12, CCl2F2; and CFC-113, C2Cl3F3), and solute tracers were used to investigate groundwater flow patterns near Lake Barco, a seepage lake in a mantled karst setting in northern Florida. Stable isotope data indicated that the groundwater downgradient from the lake contained 11-67% lake water leakage, with a limit of detection of lake water in groundwater of 4.3%. The mixing fractions of lake water leakage, which passed through organic-rich sediments in the lake bottom, were directly proportional to the observed methane concentrations and increased with depth in the groundwater flow system. In aerobic groundwater upgradient from Lake Barco, CFC-modeled recharge dates ranged from 1987 near the water table to the mid 1970s for water collected at a depth of 30 m below the water table. CFC-modeled recharge dates (based on CFC-12) for anaerobic groundwater downgradient from the lake ranged from the late 1950s to the mid 1970s and were consistent with tritium data. CFC-modeled recharge dates based on CFC-11 indicated preferential microbial degradation in anoxic waters. Vertical hydraulic conductivities, calculated using CFC-12 modeled recharge dates and Darcy's law, were 0.17, 0.033, and 0.019 mid for the surficial aquifer, intermediate confining unit, and lake sediments, respectively. These conductivities agreed closely with those used in the calibration of a three-dimensional groundwater flow model for transient and steady state flow conditions

The combined use of Sr-87/Sr-86 and carbon and water isotopes to study the hydrochemical interaction between groundwater and lakewater in mantled karst, 1996, Katz B. G. , Bullen T. D. ,
The hydrochemical interaction between groundwater and lakewater influences the composition of water that percolates downward from the surficial aquifer system through the underlying intermediate confining unit and recharges the Upper Floridan aquifer along highlands in Florida. The Sr-87/Sr-86 ratio along with the stable isotopes, D, O-18, and C-13 were used as tracers to study the interaction between groundwater, lakewater, and aquifer minerals near Lake Barco, a seepage lake in the mantled karst terrane of northern Florida. Upgradient from the lake, the Sr-87/Sr-86 ratio of groundwater decreases with depth (mean values of 0.71004, 0.70890, and 0.70852 for water from the surficial aquifer system, intermediate confining unit, and Upper Floridan aquifer, respectively), resulting from the interaction of dilute oxygenated recharge water with aquifer minerals that are less radiogenic with depth. The concentrations of Sr2 generally increase with depth, and higher concentrations of Sr2 in water from the Upper Floridan aquifer (20-35 mu g/L), relative to water from the surficial aquifer system and the intermediate confining unit, result from the dissolution of Sr-bearing calcite and dolomite in the Eocene limestone. Dissolution of calcite [delta(13)C = -1.6 permil (parts per thousand)] is also indicated by an enriched delta(13)C(DIC) (-8.8 to -11.4 parts per thousand) in water from the Upper Floridan aquifer, relative to the overlying hydrogeologic units (delta(13)C(DIC) < -16 parts per thousand). Groundwater downgradient from Lake Barco was enriched in O-18 and D relative to groundwater upgradient from the lake, indicating mixing of lakewater leakage and groundwater. Downgradient from the lake, the Sr-87/Sr-86 ratio of groundwater and aquifer material become less radiogenic and the Sr2 concentrations generally increase with depth. However, Sr2 concentrations are substantially less than in upgradient groundwaters at similar depths. The lower Sr2 concentrations result from the influence of anoxic lakewater leakage on the mobility of Sr2 from clays. Based on results from mass-balance modeling, it is probable that cation exchange plays the dominant role in controlling the Sr-87/Sr-86 ratio of groundwater, both upgradient and downgradient from Lake Barco. Even though groundwater from the three distinct hydrogeologic units displays considerable variability in Sr concentration and isotopic composition, the dominant processes associated with the mixing of lakewater leakage with groundwater, as well as the effects of mineral-water interaction, can be ascertained by integrating the use of stable and radiogenic isotopic measurements of groundwater, lakewater, and aquifer minerals

Interactions between ground water and surface water in the Suwannee River Basin, Florida, 1997, Katz B. G. , Dehan R. S. , Hirten J. J. , Catches J. S. ,
Ground water and surface water constitute a single dynamic system in most parts of the Suwannee River basin due to the presence of karst features that facilitate the interaction between the surface and subsurface. Low radon-222 concentrations (below background levels) and enriched amounts of oxygen-18 and deuterium in ground water indicate mixing with surface water in parts of the basin. Comparison of surface water and regional ground water flow patterns indicate that boundaries for ground water basins typically do not coincide with surface water drainage subbasins. There are several areas in the basin where around water flow that originates outside of the Suwannee River basin crosses surface water basin boundaries during both low-flow and high-flow conditions. In a study area adjacent to the Suwannee River that consists predominantly of agricultural land use, 18 wells tapping the Upper Floridan aquifer and 7 springs were sampled three times during 1990 through 1994 for major dissolved inorganic constituents, trace elements, and nutrients. During a period of above normal rainfall that resulted in high river stage and high ground water levels in 1991, the combination of increased amounts of dissolved organic carbon and decreased levels of dissolved oxygen in ground water created conditions favorable for the natural reduction of nitrate by denitrification reactions in the aquifer. As a result, less nitrate was discharged by ground water to the Suwannee River

Changes in the isotopic and chemical composition of ground water resulting from a recharge pulse from a sinking stream, 1998, Katz B. G. , Catches J. S. , Bullen T. D. , Michel R. L. ,
The Little River, an ephemeral stream that drains a watershed of approximately ss km(2) in northern Florida, disappears into a series of sinkholes along the Cody Scarp and flows directly into the carbonate Upper Floridan aquifer, the source of water supply in northern Florida. The changes in the geochemistry of ground water caused by a major recharge pulse from the sinking stream were investigated using chemical and isotopic tracers and mass-balance modeling techniques, Nine monitoring wells were installed open to the uppermost part of the aquifer in areas near the sinks where numerous subterranean karst solution features were identified using ground penetrating radar. During high-flow conditions in the Little River, the chemistry of water in some of the monitoring wells changed, reflecting the mixing of river water with ground water. Rapid recharge of river water into some parts of the aquifer during high-flow conditions was indicated by enriched values of delta O-18 and delta deuterium (-1.67 to -3.17 per mil and -9.2 to -15.6 per mil, respectively), elevated concentrations of tannic acid, higher (more radiogenic) Sr-87/Sr-86 ratios, and lower concentrations of Rn-222, silica, and alkalinity compared to low-how conditions. The proportion of river water that mixed with ground water ranged from 0.10 to 0.67 based on binary mixing models using the tracers O-18, deuterium, tannic acid, silica, Rn-222, and Sr-87/Sr-86. On the basis of mass-balance modeling during steady-state how conditions, the dominant processes controlling carbon cycling in ground water are the dissolution of calcite and dolomite in aquifer material, and aerobic degradation of organic matter. (C) 1998 Elsevier Science B.V. All rights reserved

Discriminating Sources and Flowpaths of Anthropogenic Nitrogen Discharges to Florida Springs, Streams and Lakes, 2005, Bacchus St, Barile Pj,
Surface discharges of anthropogenic nutrients historically have been the focus of Florida's water-quality regulations. Groundwater contributions to eutrophication of Florida's surface waters are a more recent focus. Florida's naturally oligotrophic springs, streams, and lakes are experiencing significant anthropogenic nutrient contamination resulting from groundwater discharges with elevated nitrate. Sources of nitrate contamination to these surface-water ecosystems include sewage effluent, industrial animal waste (concentrated animal feedlot operations) and inorganic fertilizers. In this study, stable nitrogen isotope ({delta}15N) analysis of freshwater macrophytes was combined with basic knowledge of watershed and springshed land use and aquifer characteristics to provide evidence of nitrogen contamination sources and groundwater flowpaths. Selected naturally oligotrophic ecosystems included springs and a spring-run stream within the Ocala National Forest (ONF) and springs, a blackwater stream, and a sinkhole lake on or adjacent to state lands. Elevated {delta}15N values ([~] 8 to 12{per thousand}) in ONF macrophytes indicated nitrogen contamination from sewage effluent. Underground injections of effluent and other wastes at ONF's Alexander and Juniper Springs Recreation Areas are the sole source of contaminants flowing through the sandy, surficial aquifer at those study areas. Samples from springs on state lands indicated nitrogen contamination from various sources via regional groundwater flowpaths. At Lake Placid's state lands, a dairy-waste lagoon was the groundwater source of nitrogen contamination via the sandy, surficial aquifer. Bulow Creek {delta}15N macrophyte values ([~] 5 to 8{per thousand}) suggested contamination from both cattle and septic tank leachate. Results indicated that uptake of anthropogenic nitrogen occurred in invasive alien and nuisance native macrophytes in the four freshwater ecosystem types evaluated

Die Erdflle von Layla und Al-Kharj Einblicke in die Karst-Hydrogeologie des oberen Jura von Saudi-Arabien, 2013, Schleusener Florian, Kempe Stephan, Dirks Heiko, Rausch Randolf, Gbel Patricia

Until the end of the 20th century, the sinkhole lakes of Layla and Al-Kharj formed oases in central Saudi Arabia. They were fed by ascending groundwater from the karstified Upper Jurassic anhydrites of the Arab and Hith formations. Morphologic features of a cave near Al-Kharj and hydraulic heads in wells of the Layla region show that the karstification of the anhydrites was hypogene. The karstification led to zones of collapse in the overlying Cretaceous sediments. Because of the exploitation of the underlying aquifer, the sinkhole-lakes dried up, exposing worldwide singular sublacustrine gypsum tufas on their walls. The gypsum tufas and widespread gypsum crusts in the vicinity of the sinkholes reflect the former ascent of the sulphate enriched groundwater.

Results 1 to 7 of 7
You probably didn't submit anything to search for