Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That narrow is a passage of restricted width between two caves or hollows in the karst underground; often not readily traversable [20]. synonyms: (french.) etroiture; (german.) enge; (greek.) steno perasma; (italian.) strettoia; (russian.) laz; (spanish.) laminador, gatera; (turkish.) agiz gecit; (yugoslavian.) sutjeska, klisura, soteska.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for soreq cave (Keyword) returned 7 results for the whole karstbase:
The Eastern Mediterranean paleoclimate as a reflection of regional events: Soreq cave, Israel., 1998, Barmatthews Miryam

Petrography, strontium, barium and uranium concentrations, and strontium and uranium isotope ratios in speleothems as palaeoclimatic proxies: Soreq Cave, Israel, 1999, Ayalon A, Barmatthews M, Kaufman A,
The reconstruction of the palaeoclimate of the eastern Mediterranean region for the last 60 ka BP is based on the delta(18)O and delta(13)C variations of speleothems from Soreq Cave, Israel. Climatic conditions during most of the rime interval between 60 and 17 ka BP (the period equivalent to the last glacial) were relatively cold and dry, while they were warmer and wetter from 17 ka BP to the present. At similar to 17 ka BP, there was a major climatic change with a sharp increase in annual rainfall and temperature and a very wet period occurring between 8.5 and 7.0 ka BP. During the colder and drier period, large, detritus-free, preferentially oriented calcite crystals were deposited from slow-moving water. As a result of a sharp change in the hydrological regime at similar to 17 ka BP, fast-moving water started entrainment of the soil and carrying detrital material into the cave, and the calcite crystals deposited became small and anhedral. Coinciding with the petrographic and isotopic changes, a sharp drop occurred in the concentrations of strontium, barium and uranium, and in the ratios Sr-87/Sr-86 and (U-234/U-238)(0), which reached mini mum values during the wettest period. This drop reflects enhanced weathering of the soil dolomite host rock. During colder and drier periods, higher trace-element concentrations and higher isotopic ratios reflect an increase in the contribution of salts derived from exogenic sources (sea spray and aeolian dust), and a reduced contribution of weathering from the host dolomites

Controls on trace element (Sr-Mg) compositions of carbonate cave waters: implications for speleothem climatic records, 2000, Fairchild Ij, Borsato A, Tooth Af, Frisia S, Hawkesworth Cj, Huang Ym, Mcdermott F, Spiro B,
At two caves (Clamouse, S France and Ernesto, NE Italy), cave drip and pool waters were collected and sampled at intervals over a 2-3 year period. Mg/Ca and Sr/Ca concentration ratios, corrected for marine aerosols, are compared with those of bedrocks and, in some cases, aqueous leachates of soils and weathered bedrocks. Cave waters do not lie along mixing lines between calcite and dolomite of bedrock carbonate, but typically show enhanced and covarying Mg/Ca and Sr/Ca. Four factors are considered as controlling processes. (1) The much faster dissolution rate of calcite than dolomite allows for the possibility of increase of Mg/Ca if water-rock contact times are increased during drier conditions. A theoretical model is shown to be comparable to experimental leachates. (2) Prior calcite precipitation along a flow path is a powerful mechanism for generating enhanced and covarying Mg/Ca and Sr/Ca ratios. This mechanism requires the solution to lose CO, into pores or caverns. (3) Incongruent dolomite dissolution has only limited potential and is best regarded as two separate processes of dolomite dissolution and calcite precipitation. (4) selective leaching of Mg and Sr with respect to Ca is shown to be important in leachates from Ernesto where it appears to be a phenomenon of calcite dissolution. In general selective leaching can occur whenever Ca is sequestered into precipitates due to freezing or drying of soils, or if there is derivation of excess Sr and Mg from non-carbonate species. The Ernesto cave has abundant water supply which in the main chamber is derived from a reservoir with year-round constant P-CO2 of around 10(-2.4) and no evidence of calcite precipitation in the karst above the cave. Two distinct, bur overlying trends of enhanced and covarying Mg/Ca and Sr/Ca away from the locus of bedrock compositions are due to calcite precipitation within the cave and, at a variable drip site, due to enhanced selective leaching at slow drip rates. Mg-enhancement in the first chamber is due to a more dolomitic bedrock and longer residence times. The Clamouse site has a less abundant water supply and presents geochemical evidence of prior calcite precipitation. both in the cave and in overlying porous dolomite/dedolomitized limestone bedrock. Initial P-CO2 values as high as 10(-1) are inferred. Experimental incubations of Clamouse soils which generated enhanced P-CO2 and precipitated CaCO3 had compositions similar to the karst waters. Calcite precipitation is inferred to he enhanced in drier conditions. Hydrological controls on cave water chemistry imply that the trace element chemistry of speleothems may be interpretable in palaeohydrological terms. Drier conditions tends to promote not only longer mean residence times (enhancing dolomite dissolution and hence Mg/Ca), but also enhances degassing and calcite precipitation leading to increased Mg/Ca and Sr/Ca. (C) 2000 Elsevier Science B.V. All rights reserved

Climatic conditions during marine oxygen isotope stage 6 in the eastern Mediterranean region from the isotopic composition of speleothems of Soreq Cave, Israel, 2002, Ayalon A, Barmatthews M, Kaufman A,
At several times during marine oxygen isotope stage 6, the eastern Mediterranean region was influenced by two extreme climatic systems: the large ice sheet over northern Europe and the wet tropics associated with African monsoons. During this interval, two major climatic events occurred in the region; the sapropel S6 layer formed ca. 176 ka in the eastern Mediterranean basin owing to the increase in the African monsoon, and another event, although not large enough to form sapropel, occurred ca. 151 ka. The isotopic composition of Soreq Cave speleothems seems to record these events as very low {delta}18O-{delta}13C values dated as ca. 178 and 152 ka. The very low {delta}18O-{delta}13C values of -6{per thousand} and -11{per thousand} to -12{per thousand}, respectively, are typical of interglacial intervals, but here they were recorded during a glacial interval. Such low peaks indicate that in this part of the eastern Mediterranean region, i.e., Israel, the rainfall amount increased dramatically. Moreover, the isotopic record of the speleothems also shows that during the entire stage 6, although the climate was as cold as much of the last glacial, the conditions were never as dry

Paleoclimate reconstruction based on the timing of speleothem growth, oxygen and carbon isotope composition from a cave located in the 'rain shadow', Israel, 2003, Vaks, A. , Barmatthews, M. , Ayalon, A. , Schilman, B. , Gilmour, M. , Hawkesworth, C. J. , Frumkin, A. , Kaufman, A. , And Matthews, A.

High-resolution 230Th/234U ages and d18O and d13C compositions of speleothems in Ma?ale Efrayim Cave located to the east of the central mountain ridge of Israel enable us to examine the nature of the rain shadow aridity during glacial and interglacial intervals. Speleothem growth occurred during marine glacial isotopic periods, with no growth during the two last marine isotope interglacial intervals and during the peak of the Last Glacial Maximum. This contrasts with speleothem growth in caves located on the western flank of the central mountain ridge, in the Eastern Mediterranean semiarid climatic zone, which continued throughout the last 240,000 yr. Thus, during glacial periods water reached both sides of the central mountain ridge. A comparison of the present-day rain and cave water isotopic compositions and amounts at the Ma?ale Efrayim Cave site with those on the western flank shows that evaporation and higher temperatures on the eastern flank are major influences on isotopic composition and the lack of rainfall. The d18O and d13C profiles of the speleothems deposited between 67,000 and 25,000 yr B.P. match the general trends of the isotopic profiles of Soreq Cave speleothems, suggesting a similar source (eastern Mediterranean Sea) and similar climatic conditions. Thus, during glacial periods the desert boundary effectively migrated further south or east from its present-day location on the eastern flank, whereas interglacial periods appear to have been similar to the present, with the desert boundary at the same position. The decrease in overall temperature and a consequent reduction in the evaporation to precipitation ratios on the eastern flank are viewed as the major factors controlling the decay of the rain shadow effect during glacial periods.


Cave air control on dripwater geochemistry, Obir Caves (Austria): Implications for speleothem deposition in dynamically ventilated caves, 2005, Spotl C. , Fairchild I. J. , Tooth A. F. ,
There are very few process studies that demonstrate the annual variation in cave environments depositing speleothems. Accordingly, we initiated a monitoring program at the Obir Caves, an Austrian dripstone cave system characterized by a seasonally changing air flow that results in a predictable pattern of high pCO(2), during summer and low pCO(2), in winter. Although similar seasonal changes in Soil pCO(2) occur, they are not directly connected with the changes in the subsurface since the dripwaters are fed from a well-mixed source showing little seasonal variation. Cold season flushing by relatively CO2-poor air enhances degassing of CO2 in the cave and leads to a high degree of supersaturation of dripwater with regard to calcite. Forced calcite deposition during the cold season also gives rise to a pronounced pattern of synchronous seasonal variations in electrical conductivity, alkalinity, pH, Ca and delta(13)C(DIC) which parallel variations recorded in delta(13)C(cave air). Chemical components unaffected by calcite precipitation (e.g., delta D,delta(18)O,SiO2,SO4) lack a seasonal signal attesting to a long residence in the karst aquifer. Modeling shows that degassing of CO2 from seepage waters results in kinetically-enhanced C isotopic fractionation, which contrasts with the equilibrium degassing shown from the Soreq cave in Israel. The Obir Caves may serve as a case example of a dripstone cave whose seepage waters (and speleothems) show intra-annual geochemical variability that is primarily due to chemical modification of the groundwater by a dynamic, bidirectional subsurface air circulation. Copyright (c) 2005 Elsevier Ltd

Middle-Late Quaternary paleoclimate of northern margins of the Saharan-Arabian Desert: reconstruction from speleothems of Negev Desert, Israel, 2010, Vaks Anton, Barmatthews Miryam, Matthews Alan, Ayalon Avner, Frumkin Amos

Speleothems in arid and hyper-arid areas of Negev Desert, Israel, are used in paleoclimate reconstruction of northern margins of Saharan-Arabian Desert, focused on the following objectives: 1) precise U–Th dating of the timing of speleothem growth as an indicator of periods of humid climate, i.e. positive effective precipitation; 2) the origin of rainfall using the speleothem δ18O and changes in spatial pattern of speleothem deposition and speleothem thickness along a north–south transect; 3) changes of vegetation cover based on speleothem δ13C variations.

During the last 350 ka major humid periods, referred to herein as Negev Humid Periods (NHP), occurred in the central and southern Negev Desert at 350–310 ka (NHP-4), 310–290 ka (NHP-3), 220–190 ka (NHP-2), and 142–109 ka (NHP-1). NHP-4, NHP-2 and NHP-1 are interglacial events, whereas NHP-3 is associated with a glacial period. During NHP-1, 2 and 3 the thickness and volume of the speleothems decrease from the north to the south, and in the most southern part of the region only a very thin flowstone layer formed during NHP-1, with no speleothem deposition occurring during NHP-2 and 3. These data imply that the Eastern Mediterranean Sea was the major source of the rainfall in northern and central Negev. More negative speleothem δ18O values, relative to central parts of Israel (Soreq Cave) are attributed to Rayleigh distillation because of the increasing distance from the Mediterranean Sea. Speleothem deposition during the NHP-4 in the southern Negev was more intensive than in most of the central Negev, suggesting the prominence of the tropical rain source.

Decrease in speleothem δ13C during NHP events indicates growth of the vegetation cover. Nevertheless, the ranges of δ13C values show that the vegetation remained semi-desert C4 type throughout the NHPs, with an additional significant carbon fraction coming from the host rock and the atmosphere. These observations, together with small thickness of the speleothem layers, favor that NHP events consisted of clusters of very short humid episodes interspersed with long droughts.

NHP events were contemporaneous with climate periods with monsoon index of ≥51 (cal/cm2 × day) and with the formation of sapropel layers in the Mediterranean Sea. Such simultaneous intensification of the monsoon and Atlantic-Mediterranean cyclones is probably related to the weakening of the high pressure cell above sub-tropical Atlantic Ocean, which enabled more rainfall to penetrate into the Saharan-Arabian Desert from the north and south. The contemporaneous occurrence of the NHP events and the increased monsoon rainfall could have opened migration corridors, creating climatic “windows of opportunity” for dispersals of hominids and animals out of the African continent.


Results 1 to 7 of 7
You probably didn't submit anything to search for