Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That microgour is miniature rimstone dams with associated tiny pools of the order of 1cm wide and deep on flowstone [25].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
Engineering challenges in Karst, Stevanović, Zoran; Milanović, Petar
See all featured articles
Featured articles from other Geoscience Journals
Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy), Dimuccio, L.A.; Rodrigues, N.; Larocca, F.; Pratas, J.; Amado, A.M.; Batista de Carvalho, L.A.
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
See all featured articles from other geoscience journals

Search in KarstBase

Your search for spatial variability (Keyword) returned 16 results for the whole karstbase:
Showing 1 to 15 of 16
Spatial variability in cave drip water hydrochemistry: Implications for stalagmite paleoclimate records, , Baldini Jul, Mcdermott F, Fairchild Ij,
The identification of vadose zone hydrological pathways that most accurately transmit climate signals through karst aquifers to stalagmites is critical for accurately interpreting climate proxies contained within individual stalagmites. A three-year cave drip hydrochemical study across a spectrum of drip types in Crag Cave, SW Ireland, reveals substantial variability in drip hydrochemical behaviour. Stalagmites fed by very slow drips ( 2[no-break space]ml/min) sites, apparently unconnected with local meteorological events. Water from these drips was typically undersaturated with respect to calcite, and thus did not result in calcite deposition. Data presented here suggest that drips in this flow regime also experience flow re-routing and blocking, and that any stalagmites developed under such drips are unsuitable as mid- to high-resolution paleoclimate proxies. Most drip sites demonstrated seasonal [Ca2] and [Mg2] variability that was probably linked to water excess. Prior calcite precipitation along the flowpath affected the chemistry of slowly dripping sites, while dilution predominantly controlled the water chemistry of the more rapidly dripping sites. This research underscores the importance of understanding drip hydrology prior to selecting stalagmites for paleoclimate analysis and before interpreting any subsequent proxy data

The role of tributary mixing in chemical variations at a karst spring, Milandre, Switzerland, , Perrin J. , Jeannin P. Y. , Cornaton F. ,
SummarySolute concentration variations during flood events were investigated in a karst aquifer of the Swiss Jura. Observations were made at the spring, and at the three main subterraneous tributaries feeding the spring. A simple transient flow and transport numerical model was able to reproduce chemographs and hydrographs observed at the spring, as a result of a mixing of the concentration and discharge of the respective tributaries. Sensitivity analysis carried out with the model showed that it is possible to produce chemical variations at the spring even if all tributaries have constant (but different for each of them) solute concentrations. This process is called tributary mixing. The good match between observed and modelled curves indicate that, in the phreatic zone, tributary mixing is probably an important process that shapes spring chemographs. Chemical reactions and other mixing components (e.g. from low permeability volumes) have a limited influence.Dissolution-related (calcium, bicarbonate, specific conductance) and pollution-related parameters (nitrate, chloride, potassium) displayed slightly different behaviours: during moderate flood events, the former showed limited variations compared to the latter. During large flood events, both presented chemographs with significant changes. No significant event water participates in moderate flood events and tributary mixing will be the major process shaping chemographs. Variations are greater for parameters with higher spatial variability (e.g. pollution-related). Whereas for large flood events, the contribution of event water becomes significant and influences the chemographs of all the parameters. As a result, spring water vulnerability to an accidental pollution is low during moderate flood events and under base flow conditions. It strongly increases during large flood events, because event water contributes to the spring discharge

Fluorescence wavelength and intensity variations of cave waters, 1999, Baker A, Genty D,
The fluorescence properties of groundwaters percolating into four cave systems have been monitored over the period 1997-1998. Fluorescence was excited between 220 and 400 nm and the emission measured from 300 to 500 nm using a fluorescence spectrophotometer. Three fluorescence centres were observed; one at the excitation-emission pair of 290-340:395-430 nm, (humic-like, probably fulvic acid), one at 265-280:300-370 nm (protein like) and a less defined region of high fluorescence at 230-280:310-420 nm (humic and/or protein like). The most consistent fluorescence intensity was observed in the excitation-emission pair of 290-340:395-430 nm, attributed to a fulvic acid source. Subtle differences (5%) in the fluorescence excitation and emission wavelength of this fluorescence peak in the groundwater were observed between the four sites, and the fluorescence intensity varied considerably ( x 60) between the four sites. Both the wavelength and the intensity variations in fluorescence are caused by the differences in the vegetation cover, soil type and humification. Data from the most intensely monitored site (Brown’s Folly Mine, England; 9 sample stations, 10-20 days frequency sampling) revealed no spatial variability in the 290-340:395-430 nm (fulvic acid) fluorescence; in contrast time-series analysis suggests that the seasonal variations do occur, with a decrease in the emission wavelength correlating with the first (autumn) peak in fluorescence intensity, and a decrease in the excitation wavelength correlating with a second (winter) fluorescence intensity peak. Results demonstrate the potential of utilising fluorescence wavelength variations in sourcing karst groundwaters, and as a possible palaeoenvironmental proxy of the overlying soil conditions if trapped within the cave speleothems

Spatial variability of chemical denudation in the upland part of the Vistula and Bug interfluve, 2000, ?wieca, Andrzej

Estimating recharge in a tropical karst aquifer, 2000, Jones I. C. , Banner J. L. , Humphrey J. D. ,
Unique constraints on seasonal and spatial variations in recharge to the Pleistocene limestone aquifer of Barbados are obtained from the analysis of oxygen isotopic compositions of groundwater and rainwater. Conventional methods of estimating recharge are based on groundwater chloride variations, coastal groundwater discharge, and potential evapotranspiration. These methods typically yield estimates of recharge for Barbados that range from 9% to 20% of average annual rainfall, with significant uncertainties that arise from poorly constrained model input parameters. Owing to the low relief and tropical climate of Barbados, variations in rainwater and groundwater delta(18)O values are primarily influenced by the amount of rainfall, with negligible temperature or altitude effects. Composite monthly rainwater delta(18)O values are inversely related to rainfall, while groundwater delta(18)O values show little seasonal variability. Rainwater delta(18)O values are equivalent to groundwater values only at the peak of the wet season. By using mass balance, the difference between groundwater and weighted-mean rainwater delta(18)O values gives recharge values. These values are in general agreement with estimates by conventional methods (10-20%) and provide unique additional information including the following: (1) Recharge is restricted to the wettest 1-3 months of the year, and (2) there is less recharge at higher elevations. The effective shift in delta(18)O values between contemporaneous rainwater and groundwater via recharge is a useful tool for estimating temporal and spatial variability in recharge and must be considered in paleoclimatic studies where climate inferences are based on groundwater delta(18)O values preserved in the geologic record

Exploration techniques for karst groundwater resources., 2001, Bakalowicz M.
Porous and fissure aquifers display statistical homogeneity of their physical and hydraulic characteristics on a scale ranging from tens to several hundreds of meters. Such homogeneity is a product of the relatively small spatial variability of these characteristics and creates conditions of general hydraulic continuity throughout the entire saturated zone. Their groundwater resources can be explored by a simple approach, i.e. defining the aquifer geometry from geological data, and determining local hydraulic parameters from pumping tests; finally, the local data are extended to characterise the entire aquifer through regionalizing techniques. However, within the infiltration and saturated zones of carbonate aquifers, karst processes create a peculiar void heterogeneity : voids may reach several meters in diameter and several kilometers in length. These voids are organized in a hierarchic network from the input surface often to a single spring: this is the conduit or drainage network. Therefore the network should be fully characterized prior to assessing the groundwater resources of a karst aquifer and its possible storage capacity, i.e. the network's transmissive or drainage function and its links with storage components (its storage function). Traditionally, speleological exploration is considered the best technique for directly characterizing a drainage network. Unfortunately, this usually gives an incorrect view of the karst aquifer because only a few parts (or none at all) are known when there is no access to the saturated zone. The classical hydrogeological approach is thus unsuitable for assessing karst aquifers. In this context, karst hydrogeologists must adopt the classical approach of physicians and biologists examining living bodies, by characterizing a karst aquifer, its resources and storage by accurate description of the void organization and an analysis of its overall behavior (or functioning) and that of its different parts or organs. With such an approach, a karst aquifer is considered as a living organism composed of different types of organs interlinked by functional relationships. Unlike physicians, hydrogeologists generally have to discover the extent of the body they wish to study (the karst system as a drainage unit, its limits and the boundary conditions). Therefore, as in the field of medicine^ techniques are used for describing the aquifer in bi- or tri-dimensional space (geology, geophysics) and for characterizing its functioning (hydrodynamics, natural tracing, hydrological balance). Moreover, data from these techniques are interpreted in order to propose a diagnosis, i.e. for building a conceptual model of the studied aquifer. In the next step, as in medicine, the conceptual model can be assessed with localized tests, such as artificial tracing and diver exploration for borehole positioning and pumping tests. Methods for interpreting tracing and pumping tests must obviously be adapted to the specific nature of karst, i.e. they cannot be based on classical models whose basic assumptions are never verified in the karstic medium. Finally, karst hydrogeologists have to set up and implement a complex set of techniques for describing the extent and limits of a karst system, exploring its drainage pattern, and analyzing its behaviour. All geoscience disciplines are ultimately required for the comprehensive exploration of groundwater resources in karst aquifers.

Spatial variability of ground-water chemistry within a karst aquifer - the milandre test site, Swiss Jura., 2001, Perrin J. , Jeannin Py. , Zwahlen F.

Comparisons Among Ground-Water Flow Models and Analysis of Discrepancies in Simulated Transmissivities of the Upper Floridan Aquifer in Ground-Water Flow Model Overlap Areas, 2001, Sepulveda N.

Discrepancies in simulated transmissivities of the Upper Floridan aquifer were identified in the overlap areas of seven ground-water flow models in southwest and west-central Florida. Discrepancies in transmissivity are generally the result of uncertainty and spatial variability in other aquifer properties. All ground-water flow models were used to simulate the potentiometric surface of the Upper Floridan aquifer for approximated steady-state conditions from August 1993 through July 1994 using the time-independent hydraulic properties assigned to the models. Specifiedhead and general-head boundary data used to generate boundary conditions appropriate to these models were obtained from the estimated annual average heads for the steady-state period. Water-use data and the approximated surficial aquifer system water table were updated to reflect conditions during the approximated steady-state period. Simulated heads at control points, vertical leakage rates to the Upper Floridan aquifer, and spring flows were used to analyze the discrepancies in transmissivities in model overlap areas. Factors causing transmissivity discrepancies in model overlap areas include differences among directly applied recharge rates, differences among model simulated vertical leakance values assigned to the overlaying confining unit resulting in varying leakage rates to the Upper Floridan aquifer, differences in heads and conductances used in general-head boundary cells, and differences in transmissivities assigned in the vicinity of springs. Additional factors include the grid resolution and algorithm used to approximate the heads of the surficial aquifer system when these are used as a source/sink layer. 


Implications of the spatial variability of infiltration-water chemistry for the investigation of a karst aquifer: a field study at Milandre test site, Swiss Jura, 2003, Perrin J. , Jeannin P. Y. , Zwahlen F. ,

A conceptual model of flow and transport in a karst aquifer based on spatial and temporal variations of natural tracers, 2003, Perrin, Jerome

Karst aquifers represent an important groundwater resource world-wide. They are highly vulnerable to contamination due to fast transport through the system and limited attenuation of contaminants. The two main hydrogeological approaches developed for studying flow and transport are: inference of the
system structure from karst spring hydrographs and chemographs; numerical modelling of flow and transport using a theoretical distribution of flow and transport field parameters. These two approaches lack of validation by detailed field measurements and observations. The main objective of this thesis is to “fill the gap” existing between field and model data. Observations of flow and transport parameters at several locations within the system were used to develop a conceptual model. This model was then compared to the existing models.
The main field test site is the Milandre karst aquifer, located in the Swiss tabular Jura. Natural tracers (major ions, oxygen-18, specific conductance) and discharge were measured on the underground river, its main tributaries, percolation waters, and the main spring. These data were collected on a long-term basis in order to assess the spatial variability of the parameters, and on a short time scale (i.e. flood events) in order to investigate the dynamic processes. Complementary sites (Brandt and Grand Bochat) were used for more observations at the base of the epikarst.
The proposed conceptual model considers four sub-systems: the soil zone, the epikarst, the unsaturated zone, and the phreatic zone. Each has its own specificity with respect to flow and transport. The soil zone controls the actual infiltration into the system. It contributes efficiently to groundwater storage. It mixes quickly stored water with fresh infiltrated water. Its thickness determines land-use: thick soils are generally cultivated whereas thin soils are under forested areas. The solutes concentration of soil waters depends on land-use for pollution-related parameters (nitrate, chloride, sulfate, potassium, sodium). Moreover the soil zone is the main source of CO2 which controls the limestone dissolution-related parameters. The epikarst zone contributes largely to groundwater storage. It distributes groundwater into vadose flow through conduits, and base flow through low permeability volumes (LPV) in the unsaturated zone. It is the sub-system where dissolution-related parameters are mostly acquired.
The unsaturated zone is seen as a transmissive zone connecting the epikarst to the horizontal conduit network of the phreatic zone. In case of flood events, some dissolution still occurs in this sub-system.
The phreatic zone is the partly flooded conduit network draining groundwater to the spring. It collects waters issued from the unsaturated zone, mixes the tributaries, and drain the water towards the discharge area. The role of phreatic storage appears to be limited for both hydraulics and transport.
Tributary mixing is a prominent process that shapes spring chemographs during flood events. In steady-state conditions, base flow is mainly sustained by the epikarst reservoir. Tracer concentrations are stable as the chemical equilibrium is already reached in the epikarst. Waters issued from the different tributaries mix in the conduit network, and the spring chemistry is the result of this mixing.
During flood events, transient flow induces non-linear mixing of the tributaries. The respective contributions of the tributaries change throughout the flood, and the spring chemographs vary accordingly. In case of important recharge, waters issued from other sources than the epikarst participate to the flood. First, soil water reaches the phreatic zone. Its characteristics are a dampened isotopic signal, and ionic concentrations differing from those of the epikarst. Second, fresh water directly issued from rainfall, may reach the phreatic zone. Its characteristics are a varying isotopic signal, and diluted ionic concentrations. The mixing components participating to the flood are controlled by the actual infiltration volume (or height). The limestone dissolution process is effective for the fresh and soil components of flow. However mixing processes play a more important role than dissolution for shaping the spring chemographs.
From a practical point of view, the project confirmed the prominent role of the soil zone and the epikarst on the solute transport in karst systems. This was already integrated in karst vulnerability mapping methods recently developed (EPIK, PI, VULK).

http://doc.rero.ch/record/2604/files/these_PerrinJ.pdf


Influence of hydrological and climatic parameters on spatial-temporal variability of fluorescence intensity and DOC of karst percolation waters in the Santana Cave System, Southeastern Brazil, 2005, Cruz J, Karmann I, Magdaleno Gb, Coichev N, Viana J,
Fluorescence intensity (FI) and organic carbon concentration of groundwater percolating through soil and rock into the Santana Cave were monitored at eight different cave sites between 2000 and 2002 to investigate their relationships to climatic parameters, stalactite discharge and thickness of rock overlying the cave. FI values, compared among sampling sites, are inversely proportional to depth and directly proportional to discharge; in contrast, dissolved organic matter (DOC) shows no significant spatial variability. Time-series analysis demonstrated similarities in DOC trends of different waters, but no correlation was observed with FI trends. Combined evaluation of DOC of infiltration waters, rainfall data and chemical parameters of Fe, O2, pH, Eh in soil solution indicate that peaks in DOC content coincide with more reduced conditions in the soil and have a lag time of 2-3 months after heavy showers. Variation of FI throughout the year occurs at all sampling sites but only higher drip discharge and rimstone pool waters were correlatable to rainfall events. FI of lower discharge sampling sites shows similar trends, but no relationship between drip discharge and rainfall variation was observed. Ranges and means of FI for all drip waters were significantly higher in the 2001-2002 period than in the preceding 2000-2001 period, which correlates with a 5.5 [deg]C increase in mean austral winter temperatures in 2001. Hence, FI variations of karst waters that form carbonate speleothems under a humid subtropical climate may provide a useful proxy in paleoenvironmental reconstruction

Carbon dioxide sources, sinks, and spatial variability in shallow temperate zone caves: Evidence from Ballynamintra Cave, Ireland., 2006, Baldini J. U. L. , Baldini L. M. , Mcdermott F. , Clipson N.
Carbon dioxide concentrations in Ballynamintra Cave, S. Ireland, generally increase with distance from the entrance, but this trend is non-linear because physical constrictions and slope changes compartmentalize the cave into zones with distinct Pco2 signatures. In this cave, CO2 originates from the soil and enters the cave by degassing from drip-water and by seeping through fractures, and is then transported throughout the cave by advection. Elevated concentrations in roof fissures, joints, and adjacent to vails suggest that these locations shelter CO2 gas from advection and permit local accumulation. CO2 enrichment was noted over a sediment accumulation, suggesting that microbial oxidation of organic compounds in the sediment provided an additional CO2 source distinct from the soil zone above the cave. Advection driven by external barometric pressure variations caused ventilation, which is the principal CO2 sink. The data presented here underscore the need for high resolution data to adequately characterize cave air Pco2 variability.

A high-resolution spatial survey of cave air carbon dioxide concentrations in Scoska Cave (North Yorkshire, UK): implications for calcite deposition and re-dissolution, 2010, Whitaker, Tom, Daniel Jones, James U L Baldini And Alex J Baker
Carbon dioxide concentration variability in caves has implications for palaeoclimatic research involving stalagmites, the conservation of cave art, condensation corrosion, and safety during cave exploration. Here we present a high-resolution spatial survey of cave air carbon dioxide partial pressure (PCO2) in the 1.5km Scoska Cave system in North Yorkshire, UK, constructed using measurements taken during the interval of July 1 to July 5, 2008. According to the spatial P-CO2 survey, 76% of the cave air P-CO2 increase occurred within the first ~50 metres; consequently the P-CO2 gradient throughout the rest of the cave was slight. As is the case in other caves, this suggests that a 'front' exists at this site between high P-CO2 cave air and low P-CO2 outside air, where the P-CO2 increases dramatically over a short distance. Temperature data support this interpretation. This CO2 'front' is thought to represent the farthest point reached by large-scale advection of air out of the cave, and its position is hypothesized to fluctuate depending on atmospheric conditions. Thus, distinct P-CO2 trends characterize sections of the Scoska Cave system, which result in spatial variability in calcite deposition and redissolution. Modelled stalagmite growth rates vary between negligible and 0.21 mm yr-1, depending on unconstrained drip water [Ca2+] values and cave atmosphere P-CO2. Assuming constant drip water [Ca2+], optimum calcite deposition occurs near to the cave entrance, where ventilation and advection reduce P-CO2 levels most effectively. However, calcite precipitation on the roof of the cave may partially control the [Ca2+] of drip water that reaches the floor, so although the link between overall calcite deposition (i.e., on the roof and the floor) and P-CO2 appears robust, the effect of variable cave air P-CO2 on stalagmite growth rates requires more research. These calculations suggest that calcite precipitation rates in different areas of Scoska Cave may differ due to local P-CO2 and temperature variability, highlighting the benefits of thoroughly understanding site-specific cave environmental factors prior to the interpretation of stalagmite-based palaeoclimate records.

Morphometric analysis of three-dimensional networks of karst conduits, 2011, Pardoiguzquiza Eulogio, Duranvalsero Juan J. , Rodriguezgaliano Victor

The main idiosyncrasy of a typical karst system is the presence of a three-dimensional network of conduits behaving as drains in the system and being responsible of both the quick response of karst springs to rainfall events and the complex distribution of solutes in the system. A morphometric analysis of the three-dimensional geometry of conduits provides quantitative measures that can be used in a range of applications. These morphometric parameters can be used as descriptors of the underground geomorphology, they provide information on speleogenesis processes, they can be correlated with karst denudation ratios, they can be used to control the simulation of realistic stochastic karst networks of conduits, and they can be correlated with hydrogeologic behaviour of the karst system. The main purpose of this paper is to define, describe and illustrate a range of morphometric indexes and morphometric functions that can be calculated nowadays because the availability of three-dimensional topographies provided by speleological work and the availability of the computational and graphical power provided by modern computers. Some of the morphometric parameters describe the existence of preferential directions of karstification, others describe the kartification along the vertical and the possible presence of inception horizons. Other indexes describe the shape complexity of the karstic network, whilst other indexes describe spatial variability of the conduit geometry, and other parameters give account of the connectivity of the three-dimensional network. The morphometric analysis is illustrated with a three-dimensional karstic network in Southern France.
Research highlights


PaPRIKa: a method for estimating karst resource and source vulnerabilityapplication to the Ouysse karst system (southwest France) , 2011, Kavouri Konstantina, Plagnes Valerie, Tremoulet Joel, Dorfliger Nathalie, Rejiba Faycal, Marchet Pierre

The intrinsic vulnerability mapping method, PaPRIKa, is proposed as a common basis for karst groundwater protection in France. PaPRIKa is a specialized method for studying karst aquifers, derived from updating the RISKE and EPIK methods. Both the structure and functioning of karst aquifers are considered in order to develop a resource and source-vulnerability mapping method. PaPRIKa means Protection of aquifers from the assessment of four criteria: P for protection (considering the most protective aspects among parameters related to soil cover, unsaturated zone and epikarst behavior), R for rock type, I for infiltration and Ka for karstification degree. The Ouysse karst system, located in the Causses area in southwest France, is one of the nine pilot sites where this method was tested and standardized. The specificities of the Ouysse system such as the size of the catchment area, the spatial variability of the karst network development, the thick infiltration zone and the system’s dual character (both karst and non-karst areas), have provided a valuable field of application. The vulnerability of the resource was assessed for the entire catchment area, while source-orientated cartography was attempted for the catchment areas of the three different capture works used for drinking water.


Results 1 to 15 of 16
You probably didn't submit anything to search for