Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That aeolianite is see eolian calcarenite.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
Engineering challenges in Karst, Stevanović, Zoran; Milanović, Petar
See all featured articles
Featured articles from other Geoscience Journals
Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy), Dimuccio, L.A.; Rodrigues, N.; Larocca, F.; Pratas, J.; Amado, A.M.; Batista de Carvalho, L.A.
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
See all featured articles from other geoscience journals

Search in KarstBase

Your search for spring hydrograph (Keyword) returned 20 results for the whole karstbase:
Showing 1 to 15 of 20
Significance and origin of very large regulating power of some karst aquifers in the Middle East. Implication on karst aquifer classification, , Elhakim M, Bakalowicz M,
SummaryKarst aquifers are the main groundwater resource in Lebanon as well as in most Mediterranean countries. Most of them are not exploited in a sustainable way, partly because their characteristics remain unknown. Karst aquifers are so complex that the assessment of their resource and their exploitable storage requires an analysis of their whole functioning, particularly by analysing the spring hydrograph. Among all various methods, the method proposed by Mangin aims to characterize at the same time the recharge conditions and the storage and recession of the saturated zone by analyzing the spring hydrograph. This method defines two parameters, the infiltration delay i, and the regulating power k which are the roots of a classification of karst systems. This classification makes the distinction between karst and porous aquifers considering the value of the regulating power. k is assumed to be lower than 0.5 in karst, and between 0.5 and 1 for all other aquifers, 1 being the upper limit.The study of karst aquifers in Lebanon shows values of k > 0.5, and even 1; former data from the literature show that other karst springs in Middle East have comparable characteristics. In fact, what is not considered by Mangin and others, k is equivalent to a mean residence time in years of water in the saturated zone. So long residence times are normally observed in poorly karstified aquifers, or containing abandoned, not functioning karstification. The geological framework in which the studied springs are located in fact shows that these aquifers have been subject to a long, complex evolution, as a consequence of the base level rising. This rising produced the flooding of the successive karst drainage network, which does not really function anymore and provides a large storage capacity to the aquifer. The very interesting properties of these aquifers make them prime targets for fulfilling the increasing needs of water

Anomalous behaviour of specific electrical conductivity at a karst spring induced by variable catchment boundaries: the case of the Podstenjšek spring, Slovenia, , Ravbar, N. , Engelhardt, I. , Goldscheider, N.

Anomalous behaviour of specific electrical conductivity (SEC) was observed at a karst spring in Slovenia during 26 high-flow events in an 18-month monitoring period. A conceptual model explaining this anomalous SEC variability is presented and reproduced by numerical modelling, and the practical relevance for source protection zoning is discussed. After storm rainfall, discharge increases rapidly, which is typical for karst springs. SEC displays a first maximum during the rising limb of the spring hydrograph, followed by a minimum indicating the arrival of freshly infiltrated water, often confirmed by increased levels of total organic carbon (TOC). The anomalous behaviour starts after this SEC minimum, when SEC rises again and remains elevated during the entire high-flow period, typically 20–40 µS/cm above the baseflow value. This is explained by variable catchment boundaries: When the water level in the aquifer rises, the catchment expands, incorporating zones of groundwater with higher SEC, caused by higher unsaturated zone thickness and subtle lithologic changes. This conceptual model has been checked by numerical investigations. A generalized finite-difference model including high-conductivity cells representing the conduit network (“discrete-continuum approach”) was set up to simulate the observed behaviour of the karst system. The model reproduces the shifting groundwater divide and the nearly simultaneous increase of discharge and SEC during high-flow periods. The observed behaviour is relevant for groundwater source protection zoning, which requires reliable delineation of catchment areas. Anomalous behaviour of SEC can point to variable catchment boundaries that can be checked by tracer tests during different hydrologic conditions.


Numerical versus statistical modelling of natural response of a karst hydrogeological system, 1997, Eisenlohr L, Bouzelboudjen M, Kiraly L, Rossier Y,
Structural and hydrodynamic characteristics of karst aquifers are mostly deduced from studies of global responses of karst springs (hydrographs, chemical or isotopic composition). In this case, global response is often used to make inferences with respect to infiltration and ground water How processes as well as on the hydrodynamic parameters. Obviously, the direct verification of these inferences is very difficult. We have used an indirect method of verification, introducing well defined theoretical karst structures into a finite element model and then analysing the simulated global response according to the currently accepted interpretation schemes. As we know what we are introducing into the numeric model, the consistency of the interpretation may be checked immediately. The results obtained in the hydrogeological study of two karst basins in the Swiss Jura and from 2-D and 3-D numerical simulations show the difficulty of finding structural parameters and hydrodynamic behaviour from statistical methods alone, i.e. correlation analyses discharge-discharge and precipitation-discharge. In effect, our first results show that the form of the correlograms depends on several factors besides the structure of the karst aquifer: (i) on the form of the floods. in other words the contrast between quick Row and base How, (ii) on the frequency of hydrological events during the period analysed and (iii) on the type of infiltration processes, in other words the ratio of diffuse infiltration to concentrated information. Obviously, the variability of a karst hydrograph is a result of a combination of these factors. Distinction between them is not always possible on hydrographs, and therefore on correlations (discharge-discharge and precipitation-discharge). (C) 1997 Elsevier Science B.V

Numerical simulation as a tool for checking the interpretation of karst spring hydrographs, 1997, Eisenlohr L, Kiraly L, Bouzelboudjen M, Rossier Y,
A schematic representation of karst aquifers may be that of a high hydraulic conductivity channel network with kilometre-wide intervals, surrounded by a low hydraulic conductivity fractured limestone volume and connected to a local discharge area, the karst spring, The behaviour of the karst spring (hydrographs, chemical or isotopic composition, etc.) represents the global response of the karst aquifer to input events. The available data an karst aquifer hydraulic parameters are limited, Global response is therefore more easily obtained and is commonly used to make inferences on the recharge and groundwater How processes, as well as on the hydraulic parameter fields. Direct verification of these interpretations is, obviously, very difficult. We have used an indirect method of verification, consisting of introducing well-defined theoretical karst structures into a finite element model and then analysing the simulated global response according to presently accepted interpretation schemes. As we know what we put into the numerical model, the validity of any interpretation may be checked. The first results indicate that some of the generally accepted interpretations are not necessarily true. In particular: (i) separation of simulated recession hydrographs into several components shows that different exponential components do not necessarily correspond to aquifer volumes with different hydraulic conductivities: (ii) non-exponential parts of recession hydrographs do not always give information about the infiltration process: and (iii) the recession coefficient of the baseflow (i.e. the last, nearly exponential part of the recession hydrograph) depends on the global configuration of the whole karst aquifer, not just on the hydraulic properties of the low hydraulic conductivity volumes. (C) 1997 Elsevier Science B.V

Analytical 1D dual-porosity equivalent solutions to 3D discrete single-continuum models. Application to karstic spring hydrograph modeling., 2002, Cornaton F. , Perrochet P.

Analytical 1D dual-porosity equivalent solutions to 3D discrete single-continuum models. Application to karstic spring hydrograph modelling, 2002, Cornaton F, Perrochet P,
One-dimensional analytical porosity-weighted solutions of the dual-porosity model are derived, providing insights on how to relate exchange and storage coefficients to the volumetric density of the high-permeability medium. It is shown that porosity-weighted storage and exchange coefficients are needed when handling highly heterogeneous systems-such as karstic aquifers-using equivalent dual-porosity models. The sensitivity of these coefficients is illustrated by means of numerical experiments with theoretical karst systems. The presented ID dual-porosity analytical model is used to reproduce the hydraulic responses of reference 3D karst aquifers, modelled by a discrete single-continuum approach. Under various stress conditions, simulation results show the relations between the dual-porosity model coefficients and the structural features of the discrete single-continuum model. The calibration of the equivalent 1D analytical dual-porosity model on reference hydraulic responses confirms the dependence of the exchange coefficient with the karstic network density. The use of the analytical model could also point out some fundamental structural properties of the karstic network that rule the shape of the hydraulic responses, such as density and connectivity. (C) 2002 Elsevier Science B.V. All rights reserved

Karstification and Groundwater Flow, 2003, Kiraly, L.

One of the principal aims of hydrogeology is to propose a reasonably adequate reconstruction of the groundwater flow field, in space and in time, for a given aquifer. For example, interpretation of the chemical and isotopic composition of groundwater, understanding of the geothermal conditions (anomalies) or forecasting the possible effects of industrial waste disposals and of intensive exploitation nearly always would require the knowledge of the regional and/or local groundwater flow systems such as defined by Toth (1963). The problem of estimating the groundwater flow field in fractured and karstified aquifers is approached within the framework of a conceptual diagram showing the relationship between groundwater flow, hydraulic parameters (aquifer properties and boundary conditions), distribution of voids and geological factors.
Autoregulation between groundwater flow and karst aquifer properties, duality of karst, nested model of geological discontinuities, scale effect on hydraulic parameters and use of numerical finite element models to check the interpretation of the global response of karst springs are some of the subjects addressed by the author. Inferences on groundwater flow regime with respect to the stage of karst evolution can be made only if the hydraulic parameter fields and the boundary conditions are known by direct observations, or estimated by indirect methods for the different types of karst. Practical considerations on the monitoring strategies applied for karst aquifers, and on the interpretation of the global response obtained at karst springs will complete the paper, which throughout reflects the point of view of a hydrogeologist.


Assessment of direct transfer and resuspension of particles during turbid floods at a karstic spring, 2003, Massei N. , Wang H. Q. , Dupont J. P. , Rodet J. , Laignel B. ,
Turbid water can be the source of important sanitary problems in karstic regions. It is the case of the Pays de Caux, in Haute Normandie, where the main resource in drinking water is provided by the chalk aquifer. In the case of the typical binary karst of the Pays de Caux, turbidity results from the input in sinkholes of turbid surface water induced by erosion on the plateaus. At some spring tappings, water may be very turbid in period of intense rainfall. The turbidity observed at a karstic spring is a complex signal which contains a part of direct transfer and a part of resuspension of the particles being transported. The aim of this study is turbidigraph separation, which would permit to distinguish the direct transfer and resuspension components of the turbidigraph. These two components are separated by comparing the elementary surface storm-derived water fluxes and elementary turbidity signals at the spring. The procedure takes place in three phases: (i) spring hydrograph separation by means of a two components mixing model (surface water and karstic groundwater) using specific electrical conductivity, (ii) decomposition of storm-derived water flux and turbidity thanks to the second-derivative method, (iii) comparison of the transfer times (approximate tomodal times) of the elementary turbidity and surface water flux signals, respectively. The mass corresponding to direct transfer, computed after signal decomposition, is then used to re-calculate a particle recovery rate, which passes so from 514 to 373%. Relations between particle flux and hydrodynamics show that resuspension can be either the fact of the dynamics of the introduction system, or that of the chalk karstic aquifer in general (case of resuspension not associated to surface water flux). In this sense, evolution of particle flux (and consequently of turbidity) can be also a marker of the karst structure. (C) 2003 Elsevier Science B.V. All rights reserved

A conceptual model of flow and transport in a karst aquifer based on spatial and temporal variations of natural tracers, 2003, Perrin, Jerome

Karst aquifers represent an important groundwater resource world-wide. They are highly vulnerable to contamination due to fast transport through the system and limited attenuation of contaminants. The two main hydrogeological approaches developed for studying flow and transport are: inference of the
system structure from karst spring hydrographs and chemographs; numerical modelling of flow and transport using a theoretical distribution of flow and transport field parameters. These two approaches lack of validation by detailed field measurements and observations. The main objective of this thesis is to “fill the gap” existing between field and model data. Observations of flow and transport parameters at several locations within the system were used to develop a conceptual model. This model was then compared to the existing models.
The main field test site is the Milandre karst aquifer, located in the Swiss tabular Jura. Natural tracers (major ions, oxygen-18, specific conductance) and discharge were measured on the underground river, its main tributaries, percolation waters, and the main spring. These data were collected on a long-term basis in order to assess the spatial variability of the parameters, and on a short time scale (i.e. flood events) in order to investigate the dynamic processes. Complementary sites (Brandt and Grand Bochat) were used for more observations at the base of the epikarst.
The proposed conceptual model considers four sub-systems: the soil zone, the epikarst, the unsaturated zone, and the phreatic zone. Each has its own specificity with respect to flow and transport. The soil zone controls the actual infiltration into the system. It contributes efficiently to groundwater storage. It mixes quickly stored water with fresh infiltrated water. Its thickness determines land-use: thick soils are generally cultivated whereas thin soils are under forested areas. The solutes concentration of soil waters depends on land-use for pollution-related parameters (nitrate, chloride, sulfate, potassium, sodium). Moreover the soil zone is the main source of CO2 which controls the limestone dissolution-related parameters. The epikarst zone contributes largely to groundwater storage. It distributes groundwater into vadose flow through conduits, and base flow through low permeability volumes (LPV) in the unsaturated zone. It is the sub-system where dissolution-related parameters are mostly acquired.
The unsaturated zone is seen as a transmissive zone connecting the epikarst to the horizontal conduit network of the phreatic zone. In case of flood events, some dissolution still occurs in this sub-system.
The phreatic zone is the partly flooded conduit network draining groundwater to the spring. It collects waters issued from the unsaturated zone, mixes the tributaries, and drain the water towards the discharge area. The role of phreatic storage appears to be limited for both hydraulics and transport.
Tributary mixing is a prominent process that shapes spring chemographs during flood events. In steady-state conditions, base flow is mainly sustained by the epikarst reservoir. Tracer concentrations are stable as the chemical equilibrium is already reached in the epikarst. Waters issued from the different tributaries mix in the conduit network, and the spring chemistry is the result of this mixing.
During flood events, transient flow induces non-linear mixing of the tributaries. The respective contributions of the tributaries change throughout the flood, and the spring chemographs vary accordingly. In case of important recharge, waters issued from other sources than the epikarst participate to the flood. First, soil water reaches the phreatic zone. Its characteristics are a dampened isotopic signal, and ionic concentrations differing from those of the epikarst. Second, fresh water directly issued from rainfall, may reach the phreatic zone. Its characteristics are a varying isotopic signal, and diluted ionic concentrations. The mixing components participating to the flood are controlled by the actual infiltration volume (or height). The limestone dissolution process is effective for the fresh and soil components of flow. However mixing processes play a more important role than dissolution for shaping the spring chemographs.
From a practical point of view, the project confirmed the prominent role of the soil zone and the epikarst on the solute transport in karst systems. This was already integrated in karst vulnerability mapping methods recently developed (EPIK, PI, VULK).

http://doc.rero.ch/record/2604/files/these_PerrinJ.pdf


Storm pulse chemographs of saturation index and carbon dioxide pressure: implications for shifting recharge sources during storm events in the karst aquifer at Fort Campbell, Kentucky/Tennessee, USA, 2004, Vesper D. J. , White W. B. ,
Continuous records of discharge, specific conductance, and temperature were collected through a series of storm pulses on two limestone springs at Fort Campbell, western Kentucky/Tennessee, USA. Water samples, collected at short time intervals across the same storm pulses, were analyzed for calcium, magnesium, bicarbonate, total organic carbon, and pH. Chemographs of calcium, calcite saturation index, and carbon dioxide partial pressure were superimposed on the storm hydrographs. Calcium concentration and specific conductance track together and dip to a minimum either coincident with the peak of the hydrograph or lag slightly behind it. The CO2 pressure continues to rise on the recession limb of the hydrograph and, as a result, the saturation index decreases on the recession limb of the hydrograph. These results are interpreted as being due to dispersed infiltration through CO2-rich soils lagging the arrival of quick-flow from sinkhole recharge in the transport of storm flow to the springs. Karst spring hydrographs reflect not only the changing mix of base flow and storm flow but also a shift in source of recharge water over the course of the storm

A quantitative method for the characterisation of karst aquifers based on spring hydrograph analysis, 2005, Kovacs A. , Perrochet P. , Kiraly L. , Jeannin P. Y. ,
This paper presents a method for characterizing flow systems in karst aquifers by acquiring quantitative information about the geometric and hydraulic aquifer parameters from spring hydrograph analysis. Numerical sensitivity analyses identified two fundamentally different flow domains, depending on the overall configuration of aquifer parameters. These two domains have been quantitatively characterized by deducing analytical solutions for the global hydraulic response of simple two-dimensional model geometries. During the baseflow recession of mature karst systems, the hydraulic parameters of karst conduits do not influence the drainage of the low-permeability matrix. In this case the drainage process is influenced by the size and hydraulic parameters of the low-permeability blocks alone. This flow condition has been defined as matrix-restrained flow regime (MRFR). During the baseflow recession of early karst systems and fissured systems, as well as the flood recession of mature systems, the recession process depends on the hydraulic parameters and the size of the low-permeability blocks, conduit conductivity and the total extent of the aquifer. This flow condition has been defined as conduit-influenced flow regime (CIFR). Analytical formulae demonstrated the limitations of equivalent models. While equivalent discrete-continuum models of early karst systems may reflect their real hydraulic response, there is only one adequate parameter configuration for mature systems that yields appropriate recession coefficient. Consequently, equivalent discrete-continuum models are inadequate for simulating global response of mature karst systems. The recession coefficient of equivalent porous medium models corresponds to the transition between matrix-restrained and conduit-influenced flow. Consequently, equivalent porous medium models yield corrupted hydrographs both in mature and early systems, and this approach is basically inadequate for modelling global response of karst aquifers. (c) 2004 Elsevier B.V. All rights reserved

Springflow hydrographs: Eogenetic vs. telogenetic karst, 2006, Florea Lj, Vacher Hl,
Matrix permeability in the range of 10(-11) to 10(-14) m(2) characterizes eogenetic karst, where limestones have not been deeply buried. In contrast, limestones of postburial, telogenetic karst have matrix permeabilities on the order of 10(-15) to 10(-20) m(2). Is this difference in matrix permeability paralleled by a difference in the behavior of springs draining eogenetic and telogenetic karst? Log Q/Q(min) flow duration curves from 11 eogenetic-karst springs in Florida and 12 telogenetic-karst springs in Missouri, Kentucky, and Switzerland, plot in different fields because of the disparate slopes of the curves. The substantially lower flow variability in eogenetic-karst springs, which results in the steeper slopes of their flow duration curves, also makes for a strong contrast in patterns (e.g., 'flashiness') between the eogenetic-karst and telogenetic-karst spring hydrographs. With respect to both spring hydrographs and the flow duration curves derived from them, the eogenetic-karst springs of Florida are more like basalt springs of Idaho than the telogenetic-karst springs of the study. From time-series analyses on discharge records for 31 springs and published time-series results for 28 additional sites spanning 11 countries, we conclude that (1) the ratio of maximum to mean (Q(max)/Q(mean)) discharge is less in springs of eogenetic karst than springs of telogenetic karst; (2) aquifer inertia (system memory) is larger in eogenetic karst; (3) eogenetic-karst aquifers take longer to respond to input signals; and (4) high-frequency events affect discharge less in eogenetic karst. All four of these results are consistent with the hypothesis that accessible storage is larger in eogenetic-karst aquifers than in telogenetic-karst aquifers

A dimensionless number describing the effects of recharge and geometry on discharge from simple karstic aquifers, 2009, Covington M. D. , Wicks C. M. , Saar M. O.

The responses of karstic aquifers to storms are often used to obtain information about aquifer geometry. In general, spring hydrographs are a function of both system geometry and recharge. However, the majority of prior work on storm pulses through karst has not studied the effect of recharge on spring hydrographs. To examine the relative importance of geometry and recharge, we break karstic aquifers into elements according to the manner of their response to transient flow and demonstrate that each element has a characteristic response timescale. These fundamental elements are full pipes, open channels, reservoir/constrictions, and the porous matrix. Taking the ratio of the element timescale with the recharge timescale produces a dimensionless number, γ, that is used to characterize aquifer response to a storm event. Using sets of simulations run with randomly selected element parameters, we demonstrate that each element type has a critical value of γ below which the shape of the spring hydrograph is dominated by the shape of the recharge hydrograph and above which the spring hydrograph is significantly modified by the system geometry. This allows separation of particular element/storm pairs into recharge-dominated and geometry-dominated regimes. While most real karstic aquifers are complex combinations of these elements, we draw examples from several karst systems that can be represented by single elements. These examples demonstrate that for real karstic aquifers full pipe and open channel elements are generally in the recharge-dominated regime, whereas reservoir/constriction elements can fall in either the recharge- or geometry-dominated regimes.


OXYGEN ISOTOPES IN DIFFERENT RECESSION SUBREGIMES OF KARST SPRINGS IN THE BREZOVSK KARPATY MTS. (SLOVAKIA), 2010, Malk P. , Michalko J.
Karst spring hydrograph separation method based on quick iterative solution of several simple exponential and linear equations, was developed for linking small datasets of samples to various hydrologic situations. The method is based on a presumption, that a springs discharge depends on the level of aquifer saturation by groundwater, and that the same discharge reflects the same groundwater saturation (piezometric level) in the aquifer. Every spring can be described by unique sets of constant starting discharges, Q0 values, recession coefficients ? (laminar flow components in exponential equations), and ? (turbulent flow components in linear equations). Each subregime can be detected by recession curve analyses of the complete springs discharge time series. In this hydrograph separation, every measured discharge value, Qt, is then determined by a representative time, t; i.e., theoretical elapsed time t from the total maximum discharge value Qmax. The aim of the iteration process is to obtain this representative time t for each discharge. The individual flow components are calculated using the same t value. These variances in subregime discharges in a certain moment can be linked to the components analysed in the same moment, in order to obtain the end members of the theoretical mixture. This technique was developed and applied on the discharge time series of the four karstic springs in the Brezovsk Karpaty Mts. (Slovakia), built mainly by karstified Middle and Upper Triassic dolomites and limestones. Groundwater of individual springs were characterised by ?18O (SMOW) and groundwater temperature values and end members of two laminar and one turbulent subregimes were calculated. Results were based on sparsely populated datasets and manual discharge records, but represent a perspective method for future development and interpretations on limited dataset results.

Water exchange and pressure transfer between conduits and matrix and their influence on hydrodynamics of two karst aquifers with sinking streams, 2010, Baillycomte Vincent, Martin Jonathan B. , Jourde Hervé, , Screaton Elizabeth J. , Pistre Sé, Verin, Langston Abigail

Karst aquifers are heterogeneous media where conduits usually drain water from lower permeability volumes (matrix and fractures). For more than a century, various approaches have used flood recession curves, which integrate all hydrodynamic processes in a karst aquifer, to infer physical properties of the movement and storage of groundwater. These investigations typically only consider flow to the conduits and thus have lacked quantitative observations of how pressure transfer and water exchange between matrix and conduit during flooding could influence recession curves.

We present analyses of simultaneous discharge and water level time series of two distinctly different karst systems, one with low porosity and permeability matrix rocks in southern France, and one with high porosity and permeability matrix rocks in north-central Florida (USA). We apply simple mathematical models of flood recession using time series representations of recharge, storage, and discharge processes in the karst aquifer. We show that karst spring hydrographs can be interpreted according to pressure transfer between two distinct components of the aquifer, conduit and matrix porosity, which induce two distinct responses at the spring. Water exchange between conduits and matrix porosity successively control the flow regime at the spring. This exchange is governed by hydraulic head differences between conduits and matrix, head gradients within conduits, and the contrast of permeability between conduits and matrix. These observations have consequences for physical interpretations of recession curves and modeling of karst spring flows, particularly for the relative magnitudes of base flow and quick flow from karst springs. Finally, these results suggest that similar analyses of recession curves can be applied to karst aquifers with distinct physical characteristics utilizing well and spring hydrograph data, but information must be known about the hydrodynamics and physical properties of the aquifer before the results can be correctly interpreted.


Results 1 to 15 of 20
You probably didn't submit anything to search for