Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That collapse breccia is a mass of rock composed of angular to rounded fragments of limestone or dolomite that has formed as the result of the collapse of the roof of a cave, of an underlying cave, or of an overhanging ledge [10]. see also solution breccia.?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for stable carbon (Keyword) returned 14 results for the whole karstbase:
500,000 year stable carbon isotopic record from Devils Hole, Nevada, 1994, Coplen T. B. , Winograd I. J. , Landwehr J. M. , Riggs A. C.

Special speleothems in cement-grouting tunnels and their implications of the atmospheric CO2 sink, 1998, Liu Z. H. , He D. B. ,
Based on the analyses and comparisons of water chemistry, stable carbon isotopes and deposition rates of speleothems, the authors found that there are two kinds of speleothems in the tunnels at the Wujiangdu Dam site, Guizhou, China, namely the CO2-outgassing type and the CO2-absorbing type. The former is natural, as observed in general karst caves, and the product of karst processes under natural conditions. The latter, however, is special, resulting from the carbonation of a cement-grouting curtain and concrete. Due to the quick absorption of CO2 from the surrounding atmosphere, evidenced by the low CO2 content in the air and the high deposition rate of speleothems (as high as 10 cm/a) in the tunnels, the contribution of the carbonation process to the sink of CO2 in the atmosphere is important tin the order of magnitude of 10(8) tons c/a) and should be taken into consideration in the study of the global carbon cycle because of the use of cement on a worldwide scale

Stable isotope stratigraphy of Holocene speleothems: examples from a cave system in Rana, northern Norway, 2001, Linge H. , Lauritzen S. E. , Lundberg J. , Berstad I. M. ,
High-precision TIMS U-series dates and continuous stable oxygen and carbon isotope profiles of a 4000 year stalagmite record from Rana, northern Norway, are presented and compared with data from two other speleothems from the same cave. The dating results yield ages from 387534 to 2963 years before AD2000, with 2[sigma] errors from 0.5 to 1%. The overall growth rate is 35 mm/ka, corresponding to a temporal resolution of 29 years/mm. The stalagmite is tested for isotopic equilibrium conditions, where all `Hendy' tests, except one, indicate isotopic equilibrium or quasi equilibrium deposition. Both the stable oxygen and carbon isotope records reveal a strong and abrupt enrichment in the near-top measurements. This corresponds in time to the opening of a second cave entrance in the late 1960s, which caused changes in the cave air circulation. The stable oxygen isotope signal is enriched compared to the modern value over the last 300 years, indicating a negative response to temperature changes. Likewise, the stable carbon isotope record is enriched in this period. However, both of the stable isotope records are shown to be significantly enriched compared to the isotope ranges displayed by other stalagmites in the same cave, and this questions the reliability of the proxy records derived from the presented stalagmite. Still, a general good correspondence of large scale fluctuations is found between the three stable oxygen isotope records from this cave. The stable carbon isotope records show large variations within the cave and are believed to be governed by soil-zone conditions, percolation pathways and possibly driprates

Inferring source waters from measurements of carbonate spring response to storms, 2002, Desmarais K, Rojstaczer S,
We infer information about the nature of groundwater flow within a karst aquifer from the physical and chemical response of a spring to storm events. The spring discharges from the Maynardville Limestone in Bear Creek Valley, Tennessee. Initially, spring discharge peaks approximately 1-2 h from the midpoint of summer storms. The initial peak is likely due to surface loading, which pressurizes the aquifer and results in water moving out of storage. All of the storms monitored exhibited recessions that follow a master recession curve very closely, indicating that storm response is fairly consistent and repeatable, independent of the time between storms and the configuration of the rain event itself. Electrical conductivity initially increases for 0.5-2.9 days (longer for smaller storms), the result of moving older water out of storage. This is followed by a 2.1-2.5 day decrease in conductivity, resulting from an increasing portion of low conductivity recharge water entering the spring. Stable carbon isotope data and the calcite saturation index of the spring water also support this conceptual model. Spring flow is likely controlled by displaced water from the aquifer rather than by direct recharge through the soil zone. (C) 2002 Elsevier Science B.V. All rights reserved

Palaeoclimatic implications of the growth history and stable isotope ([delta]18O and [delta]13C) geochemistry of a Middle to Late Pleistocene stalagmite from central-western Italy, 2004, Drysdale Rn, Zanchetta G, Hellstrom Jc, Fallick Ae, Zhao Jx, Isola I, Bruschi G,
The age structure and stable isotope composition of a stalagmite (CC1) from an upland cave in central-western Italy were studied to investigate regional response to global climatic changes. Four growth phases are constrained by 28 thermal ionization and multi-collector inductively coupled plasma mass spectrometry Th-U ages and reveal intermittent deposition through the period between Marine Isotope Stage (MIS) 11 and 3 (~380 and ~43 kyr). Most of the growth took place between ~380 and ~280 kyr, a period punctuated briefly by a hiatus in deposition through the glacial maximum of MIS 10. Growth was terminated abruptly at 280 kyr just prior to the MIS 8 glacial maximum. With a present-day chamber temperature of 7.5 [deg]C, the timing of hiatuses close to these glacial maxima point to freezing conditions at the time. No deposition was recorded through the entirety of MIS 7 and most of MIS 6, whilst two minor growth phases occurred at ~141-125 and ~43 kyr. Growth at 141 kyr indicates temperatures >0 [deg]C at a time when MIS 6 ice volumes were close to their maximum. High stable carbon isotope ([delta]13C) values (-2.8[per mille sign] to .1[per mille sign]) throughout the stalagmite's growth reflect a persistently low input of biogenic CO2, indicating that the steep, barren and alpine-like recharge area of today has been in existence for at least the last ~380 kyr. During MIS 9, the lowest [delta]13C values occur well after maximum interglacial conditions, suggesting a lag in the development of post-glacial soils in this high-altitude karst. The stable oxygen isotope ([delta]18O) trends match the main structural features of the major climate proxy records (SPECMAP, Vostok and Devils Hole), suggesting that the [delta]18O of CC1 has responded to global-scale climate changes, whilst remarkable similarity exists between CC1 [delta]18O and regional sea-surface temperature reconstructions from North Atlantic core ODP980 and southwest Pacific marine core MD97-2120 through the most detailed part of the CC1 record, MIS 9-8. The results suggest that CC1 and other stalagmites from the cave have the potential to capture a long record of regional temperature trends, particularly in regards to the relative severity of Pleistocene glacial stages

Bacterial diversity and ecosystem function of filamentous microbial mats from aphotic (cave) sulfidic springs dominated by chemolithoautotrophic 'Epsilonproteobacteria', 2004, Engel As, Porter Ml, Stern La, Quinlan S, Bennett Pc,
Filamentous microbial mats from three aphotic sulfidic springs in Lower Kane Cave. Wyoming. were assessed with regard to bacterial diversity, community structure, and ecosystem function using a 16S rDNA-based phylogenetic approach combined with elemental content and stable carbon isotope ratio analyses. The most prevalent mat morphotype consisted of while filament bundles, with low C:N ratios (3.5-5.4) and high sulfur content (16.1-51.2%). White filament bundles and two other mat morphotypes organic carbon isotope values (mean delta(13)C = -34.7parts per thousand: 1sigma = 3.6) consistent with chemolithoautotrophic carbon fixation from a dissolved inorganic carbon reservoir (cave water, mean delta(13)C = -7.47parts per thousand for two springs, n = 8). Bacterial diversity was as low overall in the clone libraries, and the most abundant taxonomic group was affiliated with the 'Epsilonproteobacteria' (68%) with other bacterial sequences affiliated with Gammaproteobacteria (12.2%), Betaproteobacteria (11.7%), Deltaproteobacteria (0.8%), and the Acidobacterium (5.6%) and Bacteriodetes/Chlorobi (1.7%) divisions. Six distinct epsilonproteobacterial taxonomic groups were identified from the microbial mats. Epsilonproteobacterial and bacterial group abundances and community structure shifted front the spring orifices downstream. corresponding to changes in dissolved sulfide and oxygen concentrations and metabolic requirements of certain bacterial groups. Most of the clone sequences for epsilonproteobacterial groups were retrieved from areas with high sulfide and low oxygen concentrations, whereas Thiothrix spp. and Thiobacillus spp. had higher retrieved clone abundances where conditions of low sulfide and high oxygen concentrations were measured. Genetic and metabolic diversity among the 'Epsilonproteobacteria' maximizes overall cave ecosystem function, and these organisms play a significant role in providing chemolithoautotrophic energy to the otherwise nutrient-poor cave habitat. Our results demonstrate that sulfur cycling supports subsurface ecosystem through chemolithoautotrophy and expand the evolutionary and ecological views of 'Epsilonproteobacteria' in terrestrial habitats. (C) 2004 Federation of European Microbiological Societies. Published by Elsevier BY. All rights reserved

Vertical patterns of stable carbon isotope in soils and particle-size fractions of karst areas, Southwest China, 2006, Zhu Shufa, Liu Congqiang,

Spatial and temporal expression of vegetation and atmospheric variability from stable carbon and nitrogen isotope analysis of bat guano in the southern United States., 2007, Wurster, C. M. , Mcfarlane, D. A. , And Bird, M. I.

Stalagmite evidence for the precise timing of North Atlantic cold events during the early last glacial, 2007, Drysdale Rn, Zanchetta G, Hellstrom Jc, Fallick Ae, Mcdonald J, Cartwright I,
Evidence of millennial-scale cold events following the last interglacial are well preserved in North Atlantic marine cores, Greenland ice, and pollen records from Europe. However, their timing was previously undetermined by radiometric dating. We report the first precise radiometric ages for two such events, C23 (105.1 {} 0.9 ka to 102.6 {} 0.8 ka) and C24 (112.0 {} 0.8 ka and 108.8 {} 1.0 ka), based on stable carbon and oxygen isotope measurements on a stalagmite from Italy (CC28). In addition to providing new information on the duration of these events in southern Europe, the age data provide invaluable tuning points for the Melisey I (C24) and Montaigu (C23) pollen zones identified in western Europe. The former event is of particular significance because it represents the end of the Eemian interglacial forest phase in western Europe. The new age data will also allow fine tuning of the timing and duration of Greenland stadial 24 (equivalent to C23) in the North Greenland Ice Core Project ice core and, via a common gasage chronology, tuning of the Vostok and EPICA (European Project for Ice Coring in Antarctica) ice cores

Stable isotope variations in stalagmites from northwestern Sweden document climate and environmental changes during the early Holocene, 2007, Sundqvist H. S. , Holmgren K. , Lauritzen S. E. ,
This paper presents two early Holocene (9.6-5.9 ka BP) high-resolution stable isotope records of stalagmites from two caves in northwestern Sweden (Korallgrottan and Labyrintgrottan). Close similarities between the Swedish records and a previously presented Norwegian stalagmite oxygen isotope record emphasize the potential of Scandinavian stalagmites to provide high-resolution regional palaeoclimatic information. The stable oxygen isotope records are interpreted to reflect the temperature evolution during the early Holocene with a gradual warming from c. 9.6 ka BP, interrupted by cooler conditions at 8.5-8.0 ka BP. The results indicate that the cooler conditions were driven by two to three abrupt cold events rather than one 8.2 event' only. Except for these cold events the stalagmite oxygen isotope records show that temperatures in northwestern Sweden were warmer than today between 9.6 and 5.9 ka BP and that during this period the interval between 7.8 and 5.9 ka BP seems to have been the warmest. The high-amplitude changes in the stable carbon isotope record of Labyrintgrottan are proposed to reflect changes in local vegetation. The area above Labyrintgrottan was most likely covered by much denser vegetation than today at the time of stalagmite growth (9.5-7.5 ka BP) and was -unlike today -probably situated below the local tree limit between 9.0 and 8.0 ka BP

Carbon cycle in the epikarst systems and its ecological effects in South China, 2012, Jiang Z. , Lian Y. , Qin X.

The carbon cycle in a global sense is the biogeochemical process by which carbon is exchanged among the biosphere, pedosphere, geosphere, hydrosphere, and atmosphere of the earth. For epikarst systems, it is the exchange of carbon among the atmosphere, water, and carbonate rocks. Southern China is located in the subtropical zone; its warm and humid weather creates favorable conditions for the dynamic physical, chemical, and ecological processes of the carbon cycle. This paper presents the mechanisms and characteristics of the carbon cycle in the epikarst systems in south China. The CO2 concentration in soils has clear seasonal variations, and its peak correlates well with the warm and rainy months. Stable carbon isotope analysis shows that a majority of the carbon in this cycle is from soils. The flow rate and flow velocity in an epikarst system and the composition of carbonate rocks control the carbon fluxes. It was estimated that the karst areas in south China contribute to about half of the total carbon sink by the carbonate system in China. By enhancing the movement of elements and dissolution of more chemical components, the active carbon cycle in the epikarst system helps to expand plant species. It also creates favorable environments for the calciphilic plants and biomass accumulation in the region. The findings from this study should help in better understanding of the carbon cycle in karst systems in south China, an essential component for the best management practices in combating rock desertification and in the ongoing study of the total carbon sink by the karst flow systems in China


Concentration and stable carbon isotopic composition of CO2 in cave air of Postojnska jama, Slovenia, 2013, Mandić, M. , Mihevc A. , Leis A, Krajcar Bronić, I.

 

Partial pressure of CO2 (pCO2) and its isotopic composition (δ13CairCO2) were measured in Postojnska jama, Slovenia, at 10 locations inside the cave and outside the cave during a one-year period. At all interior locations the pCO2 was higher and δ13CairCO2 lower than in the outside atmosphere. Strong seasonal fluctuations in both parameters were observed at locations deeper in the cave, which are isolated from the cave air circulation. By using a binary mixing model of two sources of CO2, one of them being the atmospheric CO2, we show that the excess of CO2 in the cave air has a δ13C value of -23.3 ± 0.7 ‰, in reasonable agreement with the previously measured soil-CO2 δ13C values. The stable isotope data suggest that soil CO2 is brought to the cave by drip water.


Stable isotope data as constraints on models for the origin of coralloid and massive speleothems: The interplay of substrate, water supply, degassing, and evaporation, 2015, Caddeo Guglielmo A. , Railsback L. Bruce, Dewaele Jo, Frau Franco

Many speleothems can be assigned to one of two morphological groups: massive speleothems, which consist of compact bulks of material, and coralloids, which are domal to digitate in form. Faster growth on protrusions of the substrate occurs in the typical growth layers of coralloids (where those layers are termed “coralloid accretions”), but it is not observed in the typical layers of massive speleothems, which in contrast tend to smoothen the speleothem surface (and can therefore be defined as "smoothing accretions"). The different growth rates on different areas of the substrate are explainable by various mechanisms of CaCO3 deposition (e.g., differential aerosol deposition, differential CO2 and/or H2O loss from a capillary film of solution, deposition in subaqueous environments). To identify the causes of formation of coralloids rather than massive speleothems, this article provides data about d13C and d18O at coeval points of both smoothing and coralloid accretions, examining the relationship between isotopic composition and the substrate morphology. In subaerial speleothems, data show an enrichment in heavy isotopes both along the direction of water flow and toward the protrusions. The first effect is due to H2O evaporation and CO2 degassing during a gravity-driven flow of water (gravity stage) and is observed in smoothing accretions; the second effect is due to evaporation and degassing during water movement by capillary action from recesses to prominences (capillary stage) and is observed in subaerial coralloids. Both effects coexist in smoothing accretions interspersed among coralloid ones (intermediate stage). Thus this study supports the origin of subaerial coralloids from dominantly capillary water and disproves their origin by deposition of aerosol from the cave air. On the other hand, subaqueous coralloids seem to form by a differential mass-transfer from a still bulk of water towards different zones of the substrate along diffusion flux vectors of nutrients perpendicular to the isodepleted surfaces. Finally, this isotopic method has proved useful to investigate the controls on speleothem morphology and to obtain additional insights on the evolution of aqueous solutions inside caves.


Stable isotope data as constraints on models for the origin of coralloid and massive speleothems: The interplay of substrate, water supply, degassing, and evaporation, 2015,

Many speleothems can be assigned to one of two morphological groups: massive speleothems, which consist of compact bulks of material, and coralloids, which are domal to digitate in form. Faster growth on protrusions of the substrate occurs in the typical growth layers of coralloids (where those layers are termed “coralloid accretions”), but it is not observed in the typical layers of massive speleothems, which in contrast tend to smoothen the speleothem surface (and can therefore be defined as "smoothing accretions"). The different growth rates on different areas of the substrate are explainable by various mechanisms of CaCO3 deposition (e.g., differential aerosol deposition, differential CO2 and/or H2O loss from a capillary film of solution, deposition in subaqueous environments). To identify the causes of formation of coralloids rather than massive speleothems, this article provides data about d13C and d18O at coeval points of both smoothing and coralloid accretions, examining the relationship between isotopic composition and the substrate morphology. In subaerial speleothems, data show an enrichment in heavy isotopes both along the direction of water flow and toward the protrusions. The first effect is due to H2O evaporation and CO2 degassing during a gravity-driven flow of water (gravity stage) and is observed in smoothing accretions; the second effect is due to evaporation and degassing during water movement by capillary action from recesses to prominences (capillary stage) and is observed in subaerial coralloids. Both effects coexist in smoothing accretions interspersed among coralloid ones (intermediate stage). Thus this study supports the origin of subaerial coralloids from dominantly capillary water and disproves their origin by deposition of aerosol from the cave air. On the other hand, subaqueous coralloids seem to form by a differential mass-transfer from a still bulk of water towards different zones of the substrate along diffusion flux vectors of nutrients perpendicular to the isodepleted surfaces. Finally, this isotopic method has proved useful to investigate the controls on speleothem morphology and to obtain additional insights on the evolution of aqueous solutions inside caves.


Results 1 to 14 of 14
You probably didn't submit anything to search for