Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That hydrosphere is that part of the earth that contains liquid or solid water [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for stress field (Keyword) returned 16 results for the whole karstbase:
Showing 1 to 15 of 16
Geomorphological evidence for anti-Apennine faults in the Umbro-Marchean Apennines and in the peri-Adriatic basin, Italy, 1996, Coltorti M, Farabollini P, Gentili B, Pambianchi G,
The Apennines are a relatively recent mountain chain which has been affected by uplift movements since the Upper Pliocene. In fact the remnants of an “erosional surface”, reduced close to base level, is preserved at the top of the relief. There is no general agreement on the geodynamic stress field and mechanisms which are creating the chain. However, it is largely accepted that uplift occurred together with the activation, on the western side of the chain, of extensive faults, oriented in the Apennine direction (NW-SE), which have been linked to the opening of the Tyrrhenian sea. A great debate is going on about the presence and significance of anti-Apennine faults (NE-SW) which have been observed by some authors but completely denied by others.The main evidence is represented by[ (1) block faulting of the remnants of the “erosional surface”. Along the Marchean Ridge, more elevated relief, delimiting relatively depressed areas, was created in correspondence with the Sibillini Mts. and Mt. S. Vicino. Similar evidence has been found in the Umbro-Marchean Ridge. Locally more than 1500 metres of displacement have been observed between more and less uplifted remnants. (2) Block faulting of fan deltas and related beaches, of Sicilian to Crotonian age, with more elevated sediments preserved between the Tronto and Tenna rivers and between the Musone and Esino rivers. Maximum displacement along a transect parallel to the coast is 200 metres. (3) fault-scarps affecting the Middle Pleistocene river terraces, as observed along the Esino, the Tronto, the Chienti and the Tenna river valleys. Maximum displacements are in the order of 50 metres. (4) Faulting of horizontal karst galleries and reorientation of the cave network, as in the Frasassi Gorge. Maximum displacements are about 100 metres. (5) Captures and alignments in the drainage network of the main river courses. (6) Large-scale gravitational movements, as in the Ancona landslide, and along the Chienti and Esino rivers.Their activation occurred in most cases after the Lower Pleistocene and although their displacements may be of relatively limited extent, dispite their recent activity, they played a major role in the modelling of the landscape. These faults display transtensive, extensional and trascurrent movements. Apart from the controversial geodynamic significance of these faults, from a geomorphological point of view they must be considered transverse elements of the stress field from blocks more or less uplifted along the Apennine chain.The importance and timing of activity of these faults in the Quaternary geomorphological evolution of the Umbria-Marchean Apennines is demonstrated using evidence usually underestimated by structural geologists, which can contribute to a debate based on a multidisciplinary approach

Brittle tectonics and major dextral strike-slip zone in the Buda karst (Budapest, Hungary), 1999, Benkovics L, Obert D, Bergerat F, Mansy Jl, Dubois M,
Three large (kilometric-scale) caves were studied in the Buda hills and the main directions of cave corridors, fault planes and mineralized veins were measured. Different stages of mineralizations are recognised: calcite scaleno-hedrons, baryte, silica, gypsum. New investigations of fluid inclusions in the baryte suggest a crystallization temperature of 50 degrees C and a freshwater fluid source. Microtectonic analysis allows the reconstruction of the successive tectonic events: (1) a NE-SW extensional phase at the Late Eocene-Early Oligocene limit (phase I), (2) a strike-slip phase with NW-SE compression and NE-SW extension during the Late Oligocene-Early Miocene (phase II), (3) a NW-SE transtensional phase (phase III) and finally (4) a NE-SW extensional phase of Quaternary age (phase IV). The major phase is the strike-slip one, characterized by an important dextral strike-slip zone: the Ferenc-hegy zone. (C) Elsevier, Paris

Quaternary tectonics: Influence on the structure of two karstic aquifers of Languedoc (France), 2001, Josnin J. Y. ,
Our research focuses on the effect of Quaternary tectonics on the organization of the conduit network of karst ground water flow. In the Languedoc region, the major karstic systems are developed in Malm and Lower Cretaceous platform limestones. Most of these systems are polygenetic, their genesis and evolution having been controlled by fracturing that occurred during major tectonic phases (ante-Senonian, Eocene, Oligocene, Aquitanian, Pliocene). These complex karst systems were reactivated following Messinian eustatic events, under tectonic conditions which are not well-known, particularly those that occurred during the Quaternary. Small scale deformations and a lack of seismic activity make characterization of current tectonics in Mediterranean Languedoc difficult. The presence of vertical offsets, however, demonstrates that there are active faults in the interior of or in proximity to karst systems. In two karst aquifers within the Garden basin, we have observed a correlation between the orientations of active faults and the principal karst conduits. In the Mialet basin, we demonstrate that erosion resulting from post-Miocene uplift (and so changes of boundary conditions) divides the aquifer into smaller, independent units. In the St Chaptes basin, we reconstruct the history of the karst, proposing that tectonic and eustatic events were predominant in the karstification process and that the climatic conditions were only of secondary importance. We also show how the reactivation of faults can lead to the unblocking of abandoned karst conduits, allowing their reintroduction into the active flow system, a phenomenon that can be explained by the combined influence of the present stress field and hydraulic gradients. This work, which represents a preliminary study, leads to hypotheses that we will subsequently validate through different successive modelings

Recent active faults in Belgian Ardenne revealed in Rochefort Karstic network (Namur Province, Belgium), 2001, Vandycke S. , Quinif Y. ,
This paper presents observations of recent faulting activity in the karstic network of the Rochefort Cave (Namur Province, Belgium, Europe). The principal recent tectonic features are bedding planes reactivated as normal faults, neo-formatted normal faults in calcite flowstone, fresh scaling, extensional features, fallen blocks and displacement of karstic tube. The seismotectonic aspect is expanded by the presence of fallen blocks where normally the cavity must be very stable and in equilibrium. Three main N 070degrees fault planes and a minor one affect, at a decimetre scale, the karst features and morphology. The faults are still active because recent fresh scaling and fallen blocks are observable. The breaking of Holocene soda straw stalactites and displacements of artificial features observed since the beginning of the tourist activity, in the last century, also suggest very recent reactivation of these faults. This recent faulting can be correlated to present-day tectonic activity, already evidenced by earthquakes in the neighbouring area. Therefore, karstic caves are favourable sites for the observation and the quantification of recent tectonic activity because they constitute a 3-D framework, protected from erosion. Fault planes with this recent faulting present slickensides. Thus a quantitative analysis in term of stress inversion, with the help of striated faults, has permitted to reconstruct the stress tensor responsible for the brittle deformation. The principal NW-SE extension (sigma(3) horizontal) is nearly perpendicular to that of the present regional stress as illustrated by the analysis of the last strong regional earthquake (Roermond, The Netherlands) in 1992. During the Meso-Cenozoic, the main stress tectonics recorded in this part of the European platform is similar to the present one with a NE-SW direction of extension. The discrepancy between the regional stress field and the local stress in the Rochefort cave can be the result of the inversion of the sigma(2) and sigma(3) axes of the stress ellipsoid due to its symmetry or of a local modification at the ground surface of the crustal stress field as it has been already observed in active zones

Role of an extension of pre-Quaternary age for the evolution of the carbonate massifs in the occidental Betic Cordillera: The case of the Yunquera-Nieves massif (southern Spain), 2002, Pistre Severin, Linan Cristina, Andreo Bartolome, Carrasco Francisco, Drogue Claude, Martinalgarra Agustin,
A simultaneous analysis of the fracture geometry and paleo-stress fields of the karstic Yunquera-Nieves massif i n southern Spain (Malaga Province) has been carried out with microtectonic stations. It reveals polyphased t ec -tonics linked to the structural position of this carbonate domain in the western Betic Cordillera. Among the tectonic regimes described in this domain appears a distensive stage with a radial trend probably of post-Tortonian to Quaternary age. Todate, it has seldom been described and is absent from geodynamic models though it seems to have had a regional importance. Furthermore, it played a major role for the acquisition of the hydrodynamic properties of t he aquifer and its karstogenesis. This stage opened all fractures and allowed t he development of karstic drains with NW-SE and N-S directions. Finally, the karstic network was shaped by more recent climatic and tectonic events

Interpretation of recent structures in an area of cryptokarst evolution - neotectonic versus subsidence genesis, 2002, Dias Rp, Cabral J,
The study area (Algarve) is located near the Eurasia-Africa plate boundary, experiencing significant tectonic and seismic activities. Regional geology is characterised by the presence of Mesozoic and Miocene carbonate rocks which are affected by karst phenomena. This karst is covered by terrigenous sediments of Upper Miocene and Pliocene-Pleistocene age. In the study area, the Pliocene-Quaternary cover deposits are affected by a large number of mesoscopic structures, including joints, faults, and a few folds, which indicate neotectonic activity. However, these sediments also present similar structures that result from underground karst evolution, raising the need to differentiate the neotectonic structures from those of non-tectonic origin. In fact, a variety of ductile, semi-brittle and brittle structures develop in the sediments that fill up the karst wells, controlled by different theological behaviour of the cover deposits, various strain rates associated with sudden collapse or progressive sinking, and the variable shape of the karst pits walls. The structure's geometry, geographical dispersion and directional scattering were used as criteria to infer a non-tectonic genesis. It is discussed whether some karst related structures may be controlled by the contemporary tectonic stress field and consequently are interpreted in the regional geodynamical framework. (C) 2002 Editions scientifiques et medicales Elsevier SAS. All rights reserved

The effects of the North Anatolian Fault Zone on the latest connection between Black Sea and Sea of Marmara, 2002, Oktay Fazli Y. , Gokasan Erkan, Sakinc Mehmet, Yaltirak Cenk, Imren Caner, Demirbag Emin,
The development of the Strait of Istanbul is also one of the principal results of the tectonics which led to the evolution of the North Anatolian Fault Zone (NAFZ) in the Marmara Region 3.7 Ma ago. High resolution seismic profiles from the Marmara entrance of the Strait of Istanbul show a folding which occurred after the deposition of the parallel reflected Tyrrhenian sediments. Over the Tyrrhenian strata, a fondoform zone of a deltaic sequence and marine sediments of the latest sea level rising are present. These sediments also display syn-depositional folding. This situation implies that a local compressional stress field was created over the area probably since the Wurm Glacial age. This recent variation of the tectonic regime in the northern shelf of the Sea of Marmara may indicate a significant change in the development of the NAFZ through the Sea of Marmara. This variation of evolution of the NAFZ affected the latest development of the Strait of Istanbul via clockwise rotation of the Istanbul and Kocaeli peninsulas by right-lateral shearing between two zone bounding faults. This rotation has led to the development of NNE-SSW left-lateral faults in the Strait of Istanbul and local compressional and tensional areas explaining the compressional structures seen in the southern entrance of the Strait of Istanbul. Therefore, the latest Mediterranean-Black Sea connection was established by means of the sufficient deepening of the Bosphorus channel by a variation in the evolution of NAFZ through the Sea of Marmara

Geology and models of salt extrusion at Qum Kuh, central Iran, 2004, Talbot C. J. , Aftabi P. ,
Profiles through the summit of a small nearly axisymmetric extrusion of Oligocene and Miocene salt, and simple analogue models of it, simulate the profiles of piles of ductile nappes extruded from convergent orogens. The salt extrudes from a reactive diapir along a major strike-slip fault at about 82 mm a(-1) and rises 315 m above the central plateau of Iran. The salt has the distinctive smooth profile of a viscous fountain in which an asymmetric apron of allochthonous salt gravity-spreads over its surroundings from a summit dome. Curtain folds developed in the source layer extrude from the diapir and are refolded by major recumbent folds with circumferential axes that simulate nappes. Minor flow folds with circumferential axes refold major folds in the top 10-50 m of surficial salt. Master joints > 100 m long indicate brittle failure of dilated salt by regional stress fields. Tuned to the dimensions of Qum Kuh, analytical and analogue models of viscous extrusions constrain the dynamic salt budget and a time of extrusion of at least 42000 years. New analogue models suggest that the number, amplitude and spacing of major recumbent folds within the extruded salt (and ductile nappe piles) record the number, amount and relative timing of fluctuations in the driving forces

Contrle structural et tectonique sur lhydrogologie karstique du plateau Mahafaly (domaine littoral semi-aride, sud-ouest de Madagascar), 2005, Andr Grgoire, Bergeron Gilles, Guyot Luc
Structural and tectonic control on karstic hydrogeology of the plateau Mahafaly (semiarid coastal area, South-West of Madagascar) - The southwestern coast of Madagascar is characterized by a semiarid climate and low fresh water resources, which slow down the economic development. The studied area, located south of Toliara, is separated into a western coast of aeolian dunes and sandstones, where most of the people live, and the eastern, almost unoccupied, calcareous Mahafaly plateau. The coastal aquifer is dominated by salty water. The conductivity, close to 6000S/cm in the north, decreases to 3000S/cm in the south. The coastal plain is bordered to the East by highly karstified Cenozoic limestone, separated by a north-south cliff corresponding to the Toliara fault scarp. Surveys in coastal wells and in karstic aquifers clearly point out tidal influence on piezometric level and conductivity. In the north, the limestone cliff is directly in contact with the sea, whose water contaminates the karstic aquifer according to tidal variations. In the south, fresh water flows out on the beach by resurgences in the Quaternary sandstones, probably connected to the Eocene limestones, 5 km to the east. Drillings and exploration of some shafts on the plateau permitted access to the ground water table. It displays various conductivities ranging between 1500S/cm and 5000S/cm, unusually high for a karstic aquifer far away from the coast. The mapping of such conductivities suggests more complex phenomena than only marine intrusions into the different aquifer systems. Chemical and isotopic analyses show an obvious seawater intrusion and evaporation influence for the coastal aquifer. Iin the karstic aquifer, however, trace element analyses evoke contamination by upwelling of deep mineralized water. Salty water is frequent eastward on the basement and in the Mesozic formations. Today, fracture zones in both the coastal sandstones and in the Cenozoic limestone units control ground water circulations. Such fractures result from extensional phases in the past. The surface joint directions N-S, NE-SW and NW-SE reflect the deep-seated horst and graben structures. Microtectonic analyses give evidence of a post-Eocene WNW-ESE extension, and recent seismic data define an E-W extensional regime. The underground flowpaths are mostly on fractures oriented along the present stress field. The tectonic history in the area and the chemical composition of the waters suggest a connection of the karst aquifer with circulations from deep formations through deep-seated faults belonging to the Toliara fault system. This could explain abnormal salinities in the karstic system, far away from the coast.

The use of a karstic cave system in a study of active tectonics: fault displacements recorded at Driny Cave, Male Karpaty Mts (Slovakia), 2011, Briestensky Milos, Stemberk Josef, Michalik Jozef, Bella Pavel, Rowberry Matt D.

This paper reports on a study of active tectonics undertaken in the intracratonic setting of central Europe in the junction zone between Eastern Alps and Western Carpathians. The study site is focused on the karstic system of Driny Cave in the Male Karpaty Mts, Slovakia. A range of geological, geomorphological, and in situ displacement data are presented. From previous geological mapping and our slickenside analyses, it is clear that the cave system has developed along significant fault structures. Further geomorphological investigations pointed towards ongoing faulting and block movements. For example, a number of slope failures can be seen on the hillsides above the cave and numerous fresh speleothem breaks can be observed within the cave. To test this hypothesis, three optical-mechanical crack gauges were installed in 2005. These gauges confirmed and quantified the ongoing movements. The NNE-SSW striking fault has recorded a strike-slip trend of 0.1 mm/year and a normal fault trend of 0.03 mm/year. The NW-SE striking fault has recorded a strike-slip trend of 0.04 mm/year. In addition, it has been possible to define their precise kinematics. Moreover, different strike-slip mechanisms along two transverse fault systems point to a horizontal stress field orientation. These results confirm the existence of active tectonic structures within central Europe. It is considered that the methodology described here can also be applied in other intracratonic settings where karstic cave systems are present. This would help define potentially seismogenic areas where unambiguous evidence for active faulting is lacking.

Ogof Draenen: speleogenesis of a hydrological see-saw from the karst of South Wales, 2011, Farrant Andrew R. , Simms Michael J.

 Discovered in 1994, Ogof Draenen is currently the longest cave in Britain and among the thirty longest caves in the World, with a surveyed length in excess of 70km. Like other great caves, Ogof Draenen has had a complex multiphase history. This interpretation of the genesis of the cave is based on speleo-morphological observations throughout the system. Evidence of at least four phases of cave development can be identified, associated with major shifts in resurgence location and changes in flow direction of up to 180°. Joints have had a dominant influence on passage genesis. In particular joints have facilitated the development of maze networks and remarkably shallow horizontal phreatic conduits. The amplitude of these conduits is much shallower than predicted by models based on flow path length and stratal dip. Here, we suggest that presence of laterally extensive open joints, orientated perpendicular to the regional neo-tectonic principal stress field, determines the depth of flow in the aquifer, rather than fissure frequency per se as suggested in Ford’s Four State Model. We argue that the rate of base-level lowering, coupled with the depth of karstification determines whether a cave responds by phreatic capture or vadose incision. Maze cave networks within Ogof Draenen were probably initiated by bedrock-hosted sulphide oxidation and sulphuric acid speleogenesis.

(Note: Welsh terms used in this paper: Ogof = Cave; Afon = River; Cwm = Valley; Mynydd = Mountain).

Early results of micro-deformation measurements in Magdalena Jama (Slovenia) by a vertical static pendulum, 2013, Kalenda Pavel, Neumann Libor, Šebela Stanka

Vertical static pendulums have been installed in mines or caves in Central Europe since 2007. Two­dimensional optical measurement of the tilt of a rock mass and continuous fully digital on­line evaluation of results makes possible the detection of a small tilt of the surroundings with a resolution of tens of nanoradians or the deformation of the surroundings in the horizontal plane with resolution of hundreds of nanometres. The paper describes the measurement device and the first results of the measurements in Magdalena Jama, which is part of the Postojna Cave System (Slovenia). The correlation of deformation between distant stations shows the existence of stress variations that are not only of local origin (high floods, local seismicity, and aseismic deformations). The stress field has a wider, and not only regional, character with effects that can be observed very far from the origin.

The use of damaged speleothems and in situ fault displacement monitoring to characterise active tectonic structures: an example from Zapadni Cave, Czech Republic , 2014, Briestensky Milos, Stemberk Josef, Rowberry Matt D. ,

The EU-TecNet fault displacement monitoring network records three-dimensional displacements across specifically selected tectonic structures within the crystalline basement of central Europe. This paper presents a study of recent and active tectonics at Západní Cave in northern Bohemia (Czech Republic). It extends previous geological research by measuring speleothem damage in the cave and monitoring displacements across two fault structures situated within the Lusatian Thrust Zone. The speleothem damage reflects strike-slip displacement trends: the WSW-ENE striking fault is associated with dextral strike-slip displacement while the NNW-SSE striking fault is associated with sinistral strike-slip displacement. These measurements demonstrate that the compressive stress σ1 is located in the NW or SE quadrant while the tensile stress σ3 is oriented perpendicular to σ1, i.e. in the NE or SW quadrant. The in situ fault displacement monitoring has confirmed that movements along the WSW-ENE striking fault reflect dextral strike-slip while movements along the NNW-SSE striking fault reflect sinistral strike-slip. In addition, however, monitoring across the NNW-SSE striking fault has demonstrated relative vertical uplift of the eastern block and, therefore, this fault is characterised by oblique movement trends. The fault displacement monitoring has also shown notable periods of increased geodynamic activity, referred to as pressure pulses, in 2008, 2010-2011, and 2012. The fact that the measured speleothem damage and the results of fault displacement monitoring correspond closely confirms the notion that, at this site, the compressive stress σ1 persists in the NW or SE quadrant. The presented results offer an insight into the periodicity of pressure pulses, demonstrate the need for protracted monitoring periods in order to better understanding geodynamic processes, and show that it is possible to characterise the displacements that occur across individual faults in a way that cannot be accomplished from geodetic measurements obtained by Global Navigation Satellite Systems.


Tectonic research and morphologi calobservations were carried out in six caves (Kalacka, Goryczkowa, Kasprowa Ni¿na, Kasprowa OErednia, Kasprowa Wy¿nia and Magurska) in the Bystra Val ley, in the Tatra Moun -tains. There are three cave lev els, with the youn gest ac tive and the other two in ac tive, re flect ing de vel op ment partly un der epiphreatic and partly un der phreatic con di tions. These stud ies dem on strate strong con trol of the cave pat tern by tec tonic fea tures, in clud ing faults and re lated frac tures that orig i nated or were re ju ve nated dur ing up lift,last ing from the Late Mio cene. In a few lo cal cases, the cave pas sages are guided by the com bined in flu ence of bed ding, joints and frac tures in the hinge zone of a chev ron anticline. That these cave pas sages are guided by tec tonic struc tures, ir re spec tive of lithological dif fer ences, in di cates that these proto-con duits were formed by “tec tonic in cep tion”. Dif fer ences in the cave pat tern be tween the phreatic and epiphreatic zones at a given cave level may be a re sult of mas sif re lax ation. Be low the bot tom of the val ley, the ef fect of stress on the rock mass is re lated to the re gional stress field and only in di vid ual faults ex tend be low the bot tom of the val ley. Thus in the phreatic zone, the flow is fo cused and a sin gle con duit be comes en larged. The lo cal ex ten sion is more in tense in the epiphreatic zone above the val ley floor and more frac tures have been suf fi ciently ex tended to al low wa ter to flow. The wa ter mi grates along a net work of fis sures and a maze could be form ing. Neotectonic dis place ments (of up to 15 cm), which are more re cent than the pas sages, were also iden ti fied in the caves. Neotectonic ac tiv ity is no lon ger be lieved to have as great an im pact on cave mor phol ogy as pre vi ously was thought. Those faults with dis place ments of sev eral metres, de scribed as youn ger than the cave by other au thors, should be re clas si fied as older faults, the sur faces of which have been ex posed by speleogenesis. The pos si ble pres ence of neotectonic faults with greater dis place ments is not ex cluded, but they would have had a much greater mor pho log i cal im pact than the ob served fea tures sug gest.

Tectonic control of cave development: a case study of the Bystra Valley in the Tatra Mts., 2015, Szczygieł Jacek, Gaidzik Krzysztof, Kicińska Ditta

Tectonic research and morphological observations were carried out in six caves (Kalacka, Goryczkowa, Kasprowa Niżna, Kasprowa Średnia, Kasprowa Wyżnia and Magurska) in the Bystra Valley, in the Tatra Mountains. There are three cave levels, with the youngest active and the other two inactive, reflecting development partly under epiphreatic and partly under phreatic conditions. These studies demonstrate strong control of the cave pattern by tectonic features, including faults and related fractures that originated or were rejuvenated during uplift, lasting from the Late Miocene. In a few local cases, the cave passages are guided by the combined influence of bedding, joints and fractures in the hinge zone of a chevron anticline. That these cave passages are guided by tectonic structures, irrespective of lithological differences, indicates that these proto-conduits were formed by "tectonic inception”. Differences in the cave pattern between the phreatic and epiphreatic zones at a given cave level may be a result of massif relaxation. Below the bottom of the valley, the effect of stress on the rock mass is related to the regional stress field and only individual faults extend below the bottom of the valley. Thus in the phreatic zone, the flow is focused and a single conduit becomes enlarged. The local extension is more intense in the epiphreatic zone above the valley floor and more fractures have been sufficiently extended to allow water to flow. The water migrates along a network of fissures and a maze could be forming. Neotectonic displacements (of up to 15 cm), which are more recent than the passages, were also identified in the caves. Neotectonic activity is no longer believed to have as great an impact on cave morphology as previously was thought. Those faults with displacements of several metres, described as younger than the cave by other authors, should be reclassified as older faults, the surfaces of which have been exposed by speleogenesis. The possible presence of neotectonic faults with greater displacements is not excluded, but they would have had a much greater morphological impact than the observed features suggest.

Results 1 to 15 of 16
You probably didn't submit anything to search for