MWH Global

Enviroscan Ukrainian Institute of Speleology and Karstology

Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 5
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That moisture equivalent is the percentage of water retained in a soil sample 1 cm thick after it has been saturated and subjected to a centrifugal force 1000 times gravity for 30 min. centrifuge moisture equivalent is the water content of a soil after it has been saturated with water and then subjected for 1 hour to a force equal to 1000 times that of gravity [22].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 7
What is Karstbase?



Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for sulawesi (Keyword) returned 9 results for the whole karstbase:
Spelologische Forschungen auf der Insel Sulawesi (Celebes, Indonesien) zwischen 1857 und 1977. Hhlengebiete Sdostasiens VIII., 1981,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Kusch, H.

Spelologische Forschungen auf der Insel Sulawesi (Celebes, Indonesien) zwischen 1857 und 1977 Hhlengebiete Sdostasiens VIII, 1981,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Kusch, H.

Die Bestattungshhlen der Sdtorajas im zentralen Hochland der Insel Sulawesi (Indonesien). Hhlengebiete Sdostasiens IX., 1982,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Kusch, H.

Die Bestattungshhlen der Sdtorajas im zentralen Hochland der Insel Sulawesi (Indonesien) Hhlengebiete Sdostasiens IX, 1982,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Kusch, H.

Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Turner S. J. , Flindell P. A. , Hendri D. , Hardjana I. , Lauricella P. F. , Lindsay R. P. , Marpaung B. , White G. P. ,
The Ratatotok district in the Minahasa Regency of North Sulawesi, Indonesia is an area of significant gold mineralisation. Gold has been mined in the district since at least the 1850s, and intensively by the Dutch between 1900 and 1921 with a recorded production of 5,060 kg of gold. Newmont began exploring the district in 1986, and has delineated a major sediment-hosted replacement-style deposit at Mesel, and other smaller deposits in an 8 X 5 km area. A total drill-indicated resource of over 60 metric tonnes of gold ( 2 Moz) is reported for Mesel, and three of the smaller deposits. Approximately 80% of this resource is refractory. Silver grades are usually low (< 10 g/t). The Mesel deposit is similar to many Carlin-type deposits in carbonate hostrocks, alteration, geochemical signature and ore mineralogy, but is distinct in tectonic setting. The discovery of replacement-style mineralisation at Mesel, in an impure limestone within a Tertiary island arc environment, demonstrates that deposits with outward characteristics similar to Carlin-type mineralisation are not restricted to a continental setting. Carbonate sediments in the Ratatotok district were deposited in a Late Miocene restricted basin. Later compressional tectonics caused uplift that resulted in karst development in the limestone and erosion of the adjacent volcanic arc with deposition of a thick epiclastic unit. This was followed by intrusion of shallow level pre-mineral andesite into the sequence. Mineralisation at Mesel, and probably elsewhere in the district, is synchronous with the late-stage reactivation of strike-slip faults. Mineralising fluids at Mesel were focussed along steep structures sympathetic to these faults, and trapped below a relatively impermeable andesite cap rock. Hydrothermal fluids caused decalcification of the silty, more permeable carbonate units with the formation of secondary dolomite, deposition of fine arsenian pyrite, silica veinlets and gold. Volume loss due to decalcification and dolomite formation caused collapse brecciation which enhanced fluid flow and further mineralisation. This locally culminated in total decarbonation and deposition of massive silica. Late-stage stibnite occurs in structural zones within the ore deposit, whereas arsenic (as realgar and orpiment) and mercury (as cinnabar) are concentrated on the periphery. Elsewhere in the Ratatotok district, gold mineralisation is restricted to replacement-style mineralisation in permeable zones along limestone-andesite contacts, open-space-filling quartz-calcite veins and stockworks, and residual quartz-clay breccias. The residual breccias are developed in-situ, and are interpreted to form by dissolution of the wallrock limestone from around pre-existing mineralisation. This has resulted in widespread eluvial gold occurrences

Platform-top and ramp deposits of the Tonasa Carbonate Platform, Sulawesi, Indonesia, 1997,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Wilson M. E. J. , Bosence D. W. J. ,
This study presents a detailed facies analysis of shallow-water platform and ramp deposits of an extensive Tertiary carbonate platform. Temporal and spatial variations have been used to construct a palaeogeographic reconstruction of the platform and to evaluate controls on carbonate sedimentation The late Eocene to mid-Miocene shallow-water and outer ramp/basinal deposits of the Tonasa Carbonate Platform, from the Pangkajene and Jeneponto areas of South Sulawesi respectively, formed initially as a transgressive sequence in a probable backarc setting. The platform was dominated by foraminifera and had a ramp-type southern margin. Facies belts on the platform trend east-west and their position remained remarkably stable through time indicating aggradation of the platform-top. In comparison outer ramp deposits prograded southwards at intervals into basinal marls. Tectonics, in the form of subsidence, was the dominant control on accommodation space on the Tonasa Carbonate Platform. The location of barriers' and the resultant deflection of cross-platform currents, together with the nature of carbonate producing organisms also affected sedimentation, whilst eustatic or autocyclic effects are difficult to differentiate from the affects of tectonic tilting. Moderate- to high-energy platform top or redeposited carbonate facies may form effective hydrocarbon reservoirs in otherwise tight foraminifera dominated carbonates, which occur widely in SE Asia, and have not been affected by extensive porosity occlusion

Relationships between morphology, genetics and geography in the cave fruit bat Eonycteris spelaea (Dobson, 1871) from Indonesia, 2003,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Maharadatunkamsi, Hisheh S. , Kitchener D. J. , Schmitt L. H. ,
Morphological and genetic analyses of Eonycteris spelaea from 15 islands along the Banda Arc, from Sumatra to Timor and including Kalimantan and Sulawesi, revealed considerable divergence between islands and geographical patterning. On the basis of both morphology and genetics, the populations on the large islands of Greater Sunda (Sumatra, Java, Kalimantan and Sulawesi) are generally distinct from one another and from those on the islands in Nusa Tenggara (Lombok to Timor), which form a more cohesive cluster. These differences may be the result of the Nusa Tenggara populations having been colonized more recently than those on the Greater Sunda, and probably from a single source. All biological measures of the relationships between island populations are positively associated with the extent of the sea-crossing between them, indicating the sea is an important barrier to movement. Multivariate analyses show the presence of a marked trend for body size to increase from west to east. However, individuals from Kalimantan are not consistent with this trend, being smaller than predicted, and on the two outer Banda Are islands of Sumba and Timor animals are a little larger than predicted from the longitudinal trend. These differences could be due to the relative isolation of these populations or differing environmental conditions. There is also a negative relationship between body size and island area, but this is confounded by the longitudinal trend. No significant longitudinal trends in the genetic data were detected and the trend in body size may be an adaptive response to an environmental cline that is known to occur in this region. (C) 2003 The Linnean Society of London

Dolomites in SE Asia -- varied origins and implications for hydrocarbon exploration, 2004,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Carnell Ajh, Wilson Mej,
Carbonates in SE Asia range in age from Palaeozoic to Recent, but are most important as reservoirs in the Neogene where they comprise a major target for hydrocarbon exploration (e.g. Batu Raja Formation, South Sumatra, Sunda and Northwest Java basins). Carbonates of pre-Tertiary, Palaeogene and Neogene age all show a strong diagenetic overprint in which dolomite occurs as both cementing and replacive phases associated with variable reservoir quality. This paper reviews published data on the occurrence and types of dolomites in SE Asian carbonates, and considers the models that have been used to explain the distribution and origin of dolomite within these rocks. Pre-Tertiary carbonates form part of the economic basement, and are little studied and poorly understood. Although some, such as in the Manusela Formation of Seram, may form possible hydrocarbon reservoirs, most are not considered to form economic prospects. They are best known from the platform carbonates of the Ratburi and Saraburi groups. in Thailand, and the oolitic grainstones of the Manusela Formation of Seram. The Ratburi Group shows extensive dolomitization with dolomite developed as an early replacive phase and as a late-stage cement. Palaeogene carbonates are widely developed in the region and are most commonly developed as extensive foraminifera-dominated carbonate shelfal systems around the margins of Sundaland (e.g. Tampur Formation, North Sumatra Basin and Tonasa Formation, Sulawesi) and the northern margins of Australia and the Birds Head microcontinent (e.g. Faumai Formation, Salawati Basin). Locally, carbonates of this age may form hydrocarbon reservoirs. Dolomite is variably recorded in these carbonates and the Tampur Formation, for example, contains extensive xenotopic dolomite. Neogene carbonates (e.g. Peutu Formation, North Sumatra) are commonly areally restricted, reef-dominated and developed in mixed carbonate-siliciclastic systems. They most typically show a strong diagenetic overprint with leaching, recrystallization, cementation and dolomitization all widespread. Hydrocarbon reservoirs are highly productive and common in carbonates of this age. Dolomite is variably distributed and its occurrence has been related to facies, karstification, proximity to carbonate margins and faults. The distribution and origin of the dolomite has been attributed to mixing-zone dolomitization (commonly in association with karstic processes), sulphate reduction via organic matter oxidation, and dewatering from the marine mudstones that commonly envelop the carbonate build-up. Dolomite has a variable association with reservoir quality in the region, and when developed as a replacive phase tends to be associated with improved porosity and permeability characteristics. This is particularly the case where it is developed as an early fabric-retentive phase. Cementing dolomite is detrimental to reservoir quality, although the extent of this degradation generally reflects the abundance and distribution of this dolomite. Dolomitization is also inferred to have influenced the distribution of non-hydrocarbon gases. This is best documented in North Sumatra where carbon dioxide occurs in quantities ranging from 0 to 85%. There are a number of possible mechanisms for generating this CO2 (e.g. mantle degassing), although the most likely source is considered to be the widely dolomitized Eocene Tampur Formation that forms effective basement for much of the basin. High heat flows are suggested to have resulted in the thermogenic decomposition of dolomite with CO2 produced as a by-product

Hoga island, Sulawesi, Indonesia: geomorphology and groundwater resources of a small tropical carbonate island, 2006,
Deprecated: Function get_magic_quotes_gpc() is deprecated in /home/isthin5/public_html/addon-domains/ on line 943
Dykes A. P. , Gunn J.
This paper provides the first report of the geomorphology and hydrogeology of Hoga island, a small tropical carbonate island in southeast Sulawesi, Indonesia, based on reconnaissance field explorations and surveys. Hoga is being developed as a specialist ecotourism destination, and a sustainable water supply is one of the important development issues. The island comprises 3.42km2 of low-lying hard, but highly karstified, coral limestone covered with dense scrub forest and coconut plantations. It displays dissolution features typical of similar tropical islands, including pit caves and flank margin caves. A freshwater aquifer exists with a water table 1.57m above MSL near the centre of the less karstified western two-thirds of the island, where surface elevations locally exceed 6m above MSL. All occurrences of potable freshwater, i.e. having electrical conductivity < 1500 mS cm-1, are also within this main part of the island. Complex hydrogeological conditions are indicated by the patterns of tidal influences on water levels in existing wells and natural dissolution holes. Using published studies and empirical relationships, it is estimated that Hoga contains a potable freshwater lens at least 2m thick (total volume c.300,000m3) and that annual recharge may exceed 500,000m3. As actual annual demand for freshwater since 2001 was < 2800m3, it is concluded that Hoga contains an aquifer that could sustain the present and likely future freshwater demands of residents and seasonal ecotourist populations, subject to satisfactory water quality assessment and management.

Results 1 to 9 of 9
You probably didn't submit anything to search for