Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That brushite is a cave mineral - cahpo4 2h2o [11].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
See all featured articles
Featured articles from other Geoscience Journals
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
Microbial mediation of complex subterranean mineral structures, Tirato, Nicola; Torriano, Stefano F.F;, Monteux, Sylvain; Sauro, Francesco; De Waele, Jo; Lavagna, Maria Luisa; D’Angeli, Ilenia Maria; Chailloux, Daniel; Renda, Michel; Eglinton, Timothy I.; Bontognali, Tomaso Renzo Rezio
Evidence of a plate-wide tectonic pressure pulse provided by extensometric monitoring in the Balkan Mountains (Bulgaria), Briestensky, Milos; Rowberry, Matt; Stemberk, Josef; Stefanov, Petar; Vozar, Jozef; Sebela, Stanka; Petro, Lubomir; Bella, Pavel; Gaal, Ludovit; Ormukov, Cholponbek;
See all featured articles from other geoscience journals

Search in KarstBase

Your search for surface landforms (Keyword) returned 14 results for the whole karstbase:
Le rle des hritages quaternaires dans les karsts alpins : le cas des Alpes du Nord, 1984, Chardon, M.
THE PART OF THE QUATERNARY INHERITED FEATURES IN THE ALPINE KARSTS: THE EXAMPLE OF THE NORTHERN ALPS - In the western part of the Alps, limestone mountains have been built mainly during Miocene and Pliocene. The relicts of pre-quaternary alterations or karstifications are scarce and difficult to identify. The most part of the morphological features can be related to the quaternary glacial stages. The main landforms of the high and low alpine mountains are described. The glaciers and their melting waters have excavated deep gorges-valley and caves.

Les karsts du gypse dans la dpression de l'Ebre, 1985, Guttierez M. , Ibanez M. J. , Pena J. L. , Rodriguez J. , Soriano M. A.
A FEW EXAMPLES OF GYPSUM KARSTS IN THE EBRO DEPRESSION (SPAIN) - Three areas where dissolution processes in gypsum formations have taken place, are studied. They show different geologic arrangements, one of them being folded, another in a flat--lying strata, and the third one covered by a thick unit of alluvials of the Ebro river. The climatic conditions are similar for these areas. Several kinds of dolines morphology, uvalas and large depressions similar to poljes can be distinguished. It seems to be established in the origin of some of these landforms, an interrelation between the fluvial processes and the dissolution ones.

Les karsts de l'avant-pays alpin au nord des Alpes occidentales, 1989, Chardon, M.
Karsts of the alpine foreland north to the French Western Alps: glacial origin of the underground systems - Karstic mountains are described between Rhne valley and the border of Northern Alps. The influence of quaternary glaciers is evident for surface landforms and the existence of inactive canyons can be explained only by glacial outflows. Large underground caves and systems such as La Balme, Les Echelles, contain numerous blocks and pebbles of alpine rocks. Except in some places of the alpine mountains, the pre-quaternary karstic evolution cannot be investigated. Now the rate of karstic corrosion is too low and waters are unable to produce large caves. Only the mechanical action of whirling glacial flows in some pre-determinated places can explain the presence of large caves in these low karstic mountains. The formation of these kind of caves can be correlated with the existence of the actual canyons and defils along this part of the Rhne river.

Les karsts dans le Jurassique ardchois, 1992, Marchand, Th.
ARDECHE KARSTS IN THE JURASSIC LIMESTONES - The southern part of the department of the Ardeche consists of numerous karstic zones. In these places, there are several caves, some of which are well-known: The Sauvas-Cocalieres cave, St Marcels cave... But speleological and scientific studies have mainly focused on the Cretaceous karst. The Ardche gorges cut through this area. The Jurassic karsts although lesser known deserve to be studied in depth for their hydrogeological and geomorphologic interest. The surface landforms show evidence of the intense karstification, but it is deep down underground that these phenomena are most impressive. Four elements characterise the originality of these plateaus: the very strong amplitude of outflows in relation to the structure, the active grinding and the neotectonic affect most of the caves, the importance of the fillings which are sometimes allochtonous and the probable age of the caves. In most cases, investigating them means using subterranean diving techniques.

The gypsum karst of Italy., 1996, Forti Paolo, Sauro Ugo
Gypsum karst has been studied in Italy since the last decades of the l9th Century. In 1917 the geographer Olinto Marinelli published "Fenomeni carsici delle regioni gessose d'Italia", a fundamental synthesis of the early research. He distinguished 56 different morpho-karstic gypsum units and/or areas, which are all different in size and character, and described them, paying special attention to their surface morphology and hydrology. Marinelli listed all the main gypsum units and only a few secondary outcrops were overlooked. After Marinelli's synthesis, except for some discussion of archaeological caves, only a few papers about gypsum karst and environment were published until the nineteen-fifties. In the nineteen-sixties and seventies much exploratory work and documentation was carried out in the Emilia Romagna area, principally devoted to the gypsum caves, and undertaken by the local speleological clubs and university researchers. The chapters that describe gypsum karst surface landforms in this publication contain many references to examples of gypsum karst in Italy, and these supplement the descriptions provided below.

Contribution to knowledge of gypsum karstology, PhD thesis, 1998, Calaforra Chordi, J. M.

The objective of this study was not to establish a definitive judgement regarding a topic for which very little previous information was available, but rather to open new routes for research into karst by means of a particularized analysis of some of the factors involved in the speleogenesis of gypsiferous materials. The main obstacle to the attainment of this goal has been the scientific community's lack of interest in karst in gypsum, particularly in our country, until the nineteen eighties. To overcome this neglect it was decided, in my opinion quite correctly, to extend the bounds of the study as far as possible, so that the information obtained from the contrast found between the most important worldwide zones of karst in gypsum could be applied to the gypsiferous karst in our country, and in particular, to the most significant, the karst in gypsum of Sorbas.
This is the justification for the numerous references in the text to the gypsiferous karst and cavities in gypsum that are most relevant in Spain (Sorbas, Gobantes, Vallada, Archidona, Estremera, Baena, the Ebro Basin, Estella, Beuda, Borreda, etc.) and also to the best-known gypsiferous karsts worldwide (Podolia, Secchia, Venna del Gesso Romagnolo, Sicily and New Mexico). By means of these comparisons, the initial lack of information has been overcome.
The study is based on three central tenets, which are interrelated and make up the first three chapters of this report. The first consideration was to attempt to characterize the particular typology of gypsiferous karst from the geological (both stratigraphic and structural) point of view. This chapter also provides an introduction to each of the gypsiferous karsts examined. The second chapter is dedicated to the geomorphology of gypsiferous karst, under both superficial and subterranean aspects. It is important to note that the study of a gypsiferous karst from the speleological point of view is something that may seem somewhat unusual; however, this is one of the points of principle of this paper, the attempt to recover the true meaning of a word that has historically been unfairly condemned by a large part of the Spanish scientific community. Thirdly, a detailed study has been made of the hydrochemistry of the most important gypsiferous karsts in our region, together with the presentation of a specific analytical methodology for the treatment of the hydrochemical data applicable to the gypsiferous karst.
Geological characterization of gypsum karst
In the characterization of karst in gypsum, the intention was to cover virtually all the possibilities from the stratigraphic and structural standpoints. Thus, there is a description of widely varying gypsiferous karsts, made up of Triassic to Miocene materials, some with a complex tectonic configuration and others hardly affected by folding. The gypsiferous karsts described, and their most significant geological characteristics, are as follows:
Karst in gypsum at Sorbas (Almeria): composed of Miocene gypsiferous levels with the essential characteristic of very continuous marly interstrata between the layers of gypsum, which decisively affect the speleogenesis of the area. The gypsum layers have an average thickness of about 10 m and, together with the fracturing in the zone, determine the development of the gypsiferous cavities. These are mainly selenitic gypsum - occasionally with a crystal size of over 2 m - and their texture also has a geomorphologic and hydrogeologic influence. This area is little affected by folding and so the tectonic influence of speleogenesis is reduced to the configuration of the fracturing.
The Triassic of Antequera (Malaga): this is, fundamentally, the gypsiferous outcrop at Gobantes-Meliones, originating in the Triassic and located within the well-known "Trias" of Antequera. It is made up of very chaotic gypsiferous materials containing a large quantity of heterometric blocks of varied composition; the formation may be defined as a Miocene olitostromic gypsiferous breccia that is affected by important diapiric phenomena. The presence of hypersoluble salts at depth is significant in the modification of the hydrochemical characteristics of the water and in the speleogenetic development of the karst.
The Triassic of Vallada (Valencia): Triassic materials outcrop in the Vallada area; these mainly correspond to the K5 and K4 formations of the Valencia Group, massive gypsum and gypsiferous clays. The influence of dolomitic intercalations in the sequence is crucial to the speleogenesis of the area and this, together with intense tectonic activity, has led to the development in this sector of the deepest gypsiferous cavity in the world: the "Tunel dels Sumidors". As in the above case, the presence of hypersoluble salts at depth and the varied lithology influence the variations in the hydrodynamics and hydrochemistry of the gypsiferous aquifer.
Other Spanish gypsum karsts: this heading covers a group of gypsiferous areas and cavities of significant interest from the speleogenetic standpoint. They include the area of Estremera (Madrid), with Miocene gypsiferous clays and massive gypsum arranged along a large horizontal layer; this has produced the development of the only gypsiferous cavity in Spain with maze configuration, the Pedro Fernandez cave. The study of this cave has important hydrogeological implications with respect to speleogenesis in gypsum in phreatic conditions. The Baena (Cordoba) sector, in terms of its lithology, is comparable to the "Trias de Antequera". Here, the cavities developed in gypsiferous conglomerates, following structural discontinuities have enabled contact between carbonate and gypsiferous levels, and so we may speak of a mixed karstification: a karst in calcareous rocks and gypsum. The karst of Archidona (Malaga) is similar to that of the Gobantes-Meliones group and is significant because of the geomorphologic evolution of the karst, which is related to the diapiric ascent of the area and the formation of karstic ravines. The karst in the Miocene and Oligocene gypsum of the Ebro Basin (Zaragoza), has been taken as a characteristic example of a gypsiferous karst developed under an alluvial cover, with the corresponding geomorphological implications in the evolution of the surface landforms. In the gypsiferous area of Borreda (Barcelona), the presence of anhydritic levels in the sequence might have influenced the speleogenesis of its cavities. The cavity of La Mosquera, in Beuda (Girona), developed in massive Paleogene gypsum. This is the only Spanish example of a phreatic gypsiferous cavity developed in saccaroid gypsum, which is related to the particular subterranean morphology discovered. Finally, this group includes other Spanish gypsiferous outcrops visited during the preparation of this report, the references to which may be found in the relevant chapters.
Karst in gypsum in Europe and America: In order to complete the study of karst in gypsum, and with the idea of using all the available data on the karstology of gypsiferous materials for comparative studies of data for our country, a complementary activity was to define the most significant geological characteristics of the most important gypsiferous karsts in the world. An outstanding example is the gypsiferous karst at Podolia (Ukraine), developed in microcrystalline Miocene gypsum which has undergone block tectonics related to the collapse of the Precarpatic foredeep. This gypsum provides interesting data on speleogenesis in gypsiferous materials, as its evolution is related to the confining of the only gypsiferous stratum (of 10 to 20 m depth) producing interconnected labyrinthine galleries of over 100 km in length. Another well-known karst in gypsum is the one located at "Venna del Gesso Romagnolo" (Italy), in the Bologna region, with a lithology that is very similar to that which developed at Sorbas, but with the difference that it underwent more intense tectonics with folding and fracturing of the Tertiary sediments of the Po basin. In the same Italian province, in "L'alta Val di Sec-chia", there are outcrops of karstified Triassic materials which correspond to the formation of Burano, composed of gypsum and anhydrite with hypersoluble salts at depth and very notable diapiric phenomena. The study of this area has been used for a comparative analysis - geomorphology and hydrogeochemistry - with the Spanish gypsiferous karsts developed in Triassic levels. The third Italian gypsiferous karst to be considered is the one developed in Sicily, which has extensive Messinian outcrops of microcrystalline and selenitic gypsum as well as a great variety of lithologic types within the gypsiferous sequence, which we term the "gessoso solfifera" sequence. This gypsiferous karst is especially interesting from the geomorphologic standpoint due to the great quantity and variety of present superficial karstic forms. This has also served as a guide for the study of Spanish gypsiferous karsts. Finally, considering the relation between climatology and the development of karstic forms, we have also studied the karst in gypsum in New Mexico, where there is an extensive outcrop of Permian gypsum, both micro and macrocrystalline, situated on a large platform almost unaffected by deformation, and where the conditions of aridity are very similar to those found in the gypsiferous karst of Sorbas.
Geomorphological characterization of gypsum karst
From the geomorphological standpoint, the intention is to give an overview of the great variety of karstic forms developed in gypsum, traditionally considered less important than those developed in carbonate areas. This report shows this is not the case.
The theory of Convergence of Forms has been shown to be an efficient tool for the study of the morphology of karst in gypsum. Here, its principles have been used to provide genetic explanations for various gypsiferous forms derived from carbonate studies, and for the reverse case. In fact, studying a karst in gypsum is like having available a geomorphological laboratory where not only are the processes faster but they are also applicable to the karstology of carbonate rocks.
A large number of minor karstic forms (Karren) have been identified. The most important factors conditioning their formation are the texture of the rock, climatology and the presence of overlying deposits. The first, particularly, is largely responsible for determining the abundance of certain forms with respect to others. Thus, Rillenkarren, Trittkarren and small "kamenitzas" are more frequently found in microcrystalline and sandstone gypsum (for example, karst in gypsum in Sicily (Italy) and Va-llada (Valencia, Spain). Others seem to be more exclusive to selenitic gypsum, such as exfoliation microkarren, or are closely related to the climatology of the area (Spitzkarren develops from the alteration of gypsum in semiarid conditions). Others are related either to the presence of developed soil cover (Rundkarren, using Convergence of Forms), or to their specific situation (candelas and Wallkarren around dolines and sinkholes) or to the microtexture of the gypsum and the orientation of the 010 and 111 crystalline planes and twinning planes for the development of nanokarren.
The tumuli are the most peculiar forms of the Sorbas karst in gypsum, though they have also been identified in other gypsiferous karsts (Bolonia, New Mexico, Vallada, etc.). These are subcircular domes of the most superficial layer of the gypsum. Their formation has been related to processes of precipitation-solution and of capillary movement through the gypsiferous matrix. Their extensive development is largely determined by the climatology of the area and by the structural organization. It is therefore clear that the best examples are found in the karst of Sorbas due to the abrupt changes in temperature and humidity that occur in a semiarid climate, and because of the horizontality of the gypsiferous sequence.
Karst in gypsum and its larger exokarstic forms, apart from being climatically determined, also depend on the structural state and lithological determinants of the area. Thus, it is possible to differentiate between gypsiferous karsts where the lithology, together with erosive breakup, is more important (Sorbas and New Mexico) and others where confining hydraulic conditions persist (Estremera and Podolia). In other cases, tectonics has played a significant modelling role, and there is a clear possibility of an inversion of the relief (Bolonia or Sicily) or of the effect of diapiric processes (Secchia, Vallada, Antequera). The typological diversity of the dolines is obviously also related to these premisses. Another example is the relation existing between carbonate precipitation and gypsum solution, as evidenced in contrasting examples (Bolonia versus Sorbas).
Subterranean karstic forms have been examined from a double perspective: the morphology of the passages and the mineralization within the cavities. With respect to the former, a noteworthy example is the interstratification karst of Sorbas, where subterranean channels have developed during two well-differentiated phases, the phreatic and the vadose. The first was responsible for the formation of the small proto-galleries, currently relicts that are observable as false dome channels in the bottom of the gypsiferous strata. The second, with an erosive character, enabled the breakup of the marly interstrata and the formation of the large galleries found today. Other aspects considered include the speleogenetic influence of the presence of calcareous intercalations in the gypsiferous sequence (Vallada karst), gypsiferous agglomerates (Baena karst), anhydrite (Rotgers karst), suffusion processes (Sorbas karst) and the importance of condensation.
Spelothemes in gypsiferous cavities have been approached with special concern for gypsiferous speleothemes, in particular those which, due to their genetic peculiarity or to the lack of previous knowledge about them, are most significant. Among these are gypsum balls, with phenomena of solution, detritic filling, capillarity and evaporation; gypsum hole stalagmites, where the precipitation-solution of the gypsum controlling the formation of the central orifice is related to the previous deposit of carbonate speleothemes; gypsum trays that mark the levels of maximum evaporation; gypsum dust, determined by abrupt changes in temperature and humidity in areas near the exterior of gypsiferous cavities. All of these are characteristic of, and practically exclusive to, gypsiferous karsts in semiarid ztenes such as Sorbas and New Mexico.
Karst in gypsum has been morphologically classified with reference to the previously-mentioned criteria: the presence and typology of epigean karstic forms, both macro and microform; the typology of hypogean karstic forms (passages) and the type of speleothemes within the cavities (gypsiferous or carbonate). All these variables are clearly influenced by climatology, and so a study of the geomorphology of gypsiferous karst is seen to be an efficient tool for the analysis of the paleoclimatology of an area.
Hydrogeochemical characterization of gypsum karst
The hydrogeochemical characterization of karst in gypsum was approached in two stages. The first one was intended to establish themodels to be applied to the hydrochemistry approach, while the second provided various examples of hydrochemical studies carried out in gypsiferous karsts.
The theoretical framework which has been shown to be most accurate with respect to the formulation of chemical equilibria in water related to gypsiferous karst is the Virial Theory and the Pitzer equations.
For this study, we used a simplification of these equations as far as the second virial coefficient by means of a simple, polynomial variation to obtain the equilibrium state of the water with respect to the gypsum, for an ionic strength value greater than 0.1 m and temperatures of between 0.5 and 40 "C. This was the case of the gypsiferous karsts found to be related to hypersaline water at depth (Vallada, Gobantes-Meliones, Poiano). In the remaining situations, where the ionic strength was below 0.1 m, only the theory of ionic matching was used.
The hydrochemical study of the gypsiferous karst of Gobantes-Meliones (Malaga) led to the hypothesis of the possible influence of hypersaline water on karstification in gypsum. Using theoretical examples of the mixing of water derived both from hypersaline water and from water related only to the gypsiferous karst, it was shown that above a percentage content of 0.1:0.9 of saline and sulphated water, the mixture is subsaturated with respect to gypsum and other minerals. On reaching percentages greater than 0.5:0.5, values of oversaturation are again found. This could mean that the contact between sulphated and hypersaline water is a karstification zone in gypsum at depth.
In the gypsiferous karst at Salinas-Fuente Camacho (Granada), a study has been made of the hydrochemical influence of dolomitic levels in the sequence by means of the analysis of the hydrochemical routes between hydraulically-connected points. The generic case of mass transfer in this gypsiferous aquifer implies a precipitation of calcite which is in-congruent with dolomitic solution, proving that the process of dedolomitization in gypsiferous aquifers with an abundance of dolomitic rocks can be an effective process. In situations of high salinity, with contributions of hypersaline water, the process may be inverted, such as occurs in coastal carbonate aquifers influenced by the fresh-saltwater interface.
The gypsiferous aquifer of Sorbas-Tabernas (Almeria) provides the best case of karstification in gypsum in Spain; the hydrochemical study carried out has been used as an example of karstification in gypsum completely uninfluenced by sodium-chloride facies. It is shown, from the hydrochemical similarities between the different sectors, that the uniformity of the flow from the system main spring (Los Molinos) responds to the delayed hydraulic input through the overlying post-evaporitic materials and to the pelitic intercalations of the gypsiferous sequence. The aquifer is partially semiconfined, a situation which is comparable to the onset of the karstification stage, while the area of the Sorbas karst, strictly speaking, bears no hydriaulic relation to the rest of the system, behaving like a free aquifer intrinsically related to the epikarstic zone. This fact is demonstrated by the hydrochemical differences between the main spring and those related to gypsiferous cavities.
Apart from the general study of the Sorbas-Tabemas aquifer, a study was also made of the hydrochemical-time variations within cavities, and in particular within the Cueva del Agua, where it is possible to observe particular processes affecting karstification in gypsum, such as the precipitation of carbonates on the floor of the cavity which produce, in that area, a greater solution of gypsum (the phenomenon of hyperkarstification). Furthermore, the temporal evolution of the chemistry of the cavity, along 800 m of subterranean flow through its interior, shows the existence of inertial sectors where the variations were less abrupt. Only in the case of particular sectors, related to sporadic hydriaulic contributions or to the proximity to points of access., was a notable seasonal influence detected.
A similar hydrochemical study was carried out in the karst of Vallada (Valencia), along the cavity of the Tunel dels Sumidors. The chemistry here was compared with that of the springs of Brolladors (whose water rapidly infiltrates into the cavity) and Saraella (a saline resurgence of the whole system). Unexpected increases in the ionic content of certain salts (sulphates and chlorides) were detected during periods of increased flow; these were interpreted as the effect of the recharging of the Saraella spring arising from the immediate contribution of rapidly circulating sulfated water coming from the cavity and the subsequent mobilization of interstitial water with an ionic content higher than the characteristic level of the spring.
We present as a hypothesis the idea that, in addition to the hydrogeochemical processes described that can affect the evolution of a gypsiferous karst, the processes of sulphate reduction also influence karstification in gypsum, at least during the earliest stages. Some examples such as the presence of gypsum with abundant organic matter reprecipitated into phreatic channels (Sorbas) or veins of sulphur related to gypsiferous karsts (Podolia, Sicily) lend support to this idea.
Studies of the solution-erosion of gypsum have been performed by physical methods (tablets and M.E.M.) showing that the solution-erosion of gypsum within cavities is minimal (0.03 mm/ year) compared to that existing in the exterior (0.3 mm/year). The speleogenetic effect of condensation within the cavities has also been shown, with solution-erosion rates of 0.005 mm/year to be like the equivalent surface lowering. These data correspond to the karst in gypsum at Sorbas, where, additionally, a study about the time variation of the solution-erosion was carried out. It was found that the process is not continuous but clearly sporadic. During periods of torrential rain, the solution-erosion ranges from a weight loss of 400 mg/cm2/year on the surface of the karst to 75 mg/cm2/year inside the caves, while during the rest of the year the weight loss was barely 1 mg/cm2/year. The physical methods were compared with the results obtained from chemical methods, and it was found that, in general, higher values were obtained with the former (10-20% higher when weighted for the rainfall during the measuring periods). Thus it is reasonable to consider that the erosive process is more marked than was at first assumed.
In total, three cavity tracing experiments were carried out, all with fluoresceine, two of them in Cueva del Agua in Sorbas (during periods of high and low water levels) and the other in Tunel dels Sumidors in Vallada. At the first site, the comparison of the two tracing tests reveals a differential hydrodynamic behaviour of the cavity for the two contrasting situations; periods of high water input and periods of low rainfall. This behaviour is characteristic of well developed karstic aquifers, where the hydrodynamic effect of the circulation of water through small channels or, in this case, through the gypsiferous matrix and interbedded marly layers, seems to be more important under conditions of low hydraulic input than when rainfall is abundant. The two situations tested seem to confirm that the Cueva del Agua system, an epikarstic aquifer, which is representative of karstification in gypsum, has scarce retentive power and so large volumes of precipitation are totally discharged via the spring within a few days. However, the explanation of the small but continuous flow from the base of the cavity requires the inclusion of other factors in the interpretation. In this case, the flow seems to be fairly independent of rainfall and attributable to other processes, in addition to the previously described ones, such as the retentive power of the gypsiferous matrix and the marly interstrata. These might include the high degree of condensation measured over long periods, both on the surface of the karst in gypsum and within the cavities. In the case of the Tunel dels Sumidors, a highly irregular response was found, despite the fact that the coefficient of dispersivity was found to be 0.4. This value is similar to that obtained for the karst in gypsum at Sorbas in response to low water conditions, and so, here too, one might assume the influence of greater than expected flow-retaining processes, between the entry and exit points. Doubtless the karstic system of the Tunel dels Sumidors is more complex than was initially expected and in fact, the irregularity reflected by the fluoresceine concentration curve over time implies the existence of other factors to explain the diversity of the relative maxima obtained. Firstly, the presence of numerous Triassic clay intercalations might delay the flow, in addition to retaining a certain quantity of fluoresceine by ionic exchange. There is also a possibility that the flow is dispersed through a network of small conduits and pores, due to the permeability of the gypsiferous matrix. Finally, we cannot discount the possible existence of a deep-level input which, in this case, would be responsible for the variation in the flow and the chemical composition. This set of suppositions, as a whole, would explain the fact that the response of the spring to tracing is so irregular, even though we cannot achieve a definition of the qualitative influence of each one on the hydrodynamics of the system.
In order to verify some of the above hypotheses, particularly those referring to the process of condensation within cavities, an experiment was designed, consisting of a microtracing test at some points where condensation had been detected within the Cueva del Agua at Sorbas. The test produced a range of condensation flow speed values of 0.2 to 30 cm/hour and shows that, in those sections where the presence of condensation flow is visually apparent, there is a rapid dispersion of the colourant. However, it also shows that at points where there is no apparent condensation the process also occurs, but at a lower rate of efficiency. The importance of condensation within cavities has two aspects; firstly, speleogenetic, with the development of solution forms (cupolas) and deposit forms (capillarity boxwork); and secondly, hydrogeological, as this is the reason why certain processes (strong changes in temperature and humidity, multiple routes of airflow exchange with the exterior) may in themselves constitute a hydraulic contribution, of slight importance, but sufficient to explain a large part of the base flow (0.2 - 0.8 L/s) of a whole cavity system such as the Cueva del Agua in semiarid conditions.
With the intention of completing the analyses carried out in various karsts in gypsum, instruments were installed in the Cueva del Agua at Sorbas to measure, by continuous registration, some important physico-chemical parameters that might provide additional data on the hydro-geologic behaviour of this gypsiferous karst, especially at the level of the epikarstic zone. The parameters of temperature and water conductivity were considered most important, due to their singular behaviour patterns. During the experiment there were two periods of rainfall that modified the chemistry of the cavity, one of 30 mm in two days and another of 200 mm (almost the annual total) in four days. In the second case, which was much more extreme, a very significant increase in water temperature (up to 7 °C during the initial period of high water flow) was detected, while conductivity fell. But suddenly, when the minimum conductivity was reached, the temperature dropped sharply by 6-7 °C to return to the base temperature of the cavity. Subsequently, the temperature again stabilized at about 7 °C above the data recorded during the dry period. This behaviour pattern was not detected when the rainfall was slight. The explanation for this dual behaviour observed is fundamentally based on the quantity of rainfall and on the differences between the exterior air temperature, the temperature of interstitial water and the temperature recorded in the spring during high water flow. When water temperature in the cavity during high water flow is higher than the base temperature recorded in the period immediately before, it means that the interstitial water does not mobilize. However, when at any time the two temperatures coincide, one might suppose that there might have existed a process of mobilization of the water previously resident in the rock, by a piston effect, but in the unsaturated zone. On the other hand, the temporal variations of these parameters during the months following periods of high rainfall have enabled us to detect the existence of distinct periods during the return to normal cavity conditions. By carefully examining the decrease curve of water temperature inside the cavity while conductivity regained its maximum stable value, two periods may be differentiated. The first may be termed the "inertial influence period", when the rainfall occurring removes all signs of natural variation in the cavity. Thus, the daily external influences are not clearly detectable and the curve is downward-sloping and asymptotic with no significant oscillations. In the second period, which ends with the total stabilization of the parameter at the level of the initial conditions, the asymptotic descent is seen to be affected by daily temperature variations. This is termed the "inertial recovery period", during which external variations start to have an effect on the interior of the cavity such that there is a progressive increase in the amplitude of the daily variation in water temperature, air temperature and relative humidity. This behaviour pattern of variation of these parameters during periods of high rainfall, might be extended to all karstic systems, varying only in magnitude and temporal extent.


La grotte dAlisadr, un tmoin exceptionnel de lvolution morphologique du Zagros (Iran), 2004, Dumas, Dominique
Cave of Alisadr: a geomorphologic site of outstanding interest in the Zagros Mountains of Iran - The tourist cave of Alisadr, located on the eastern boundaries of the Zagros Mountains, is biggest subsurface cave visited in Iran. Most part of the karstic underground galleries is permanently filled with water: on the sides of the galleries former water table levels are indicated by numerous calcareous sinters. The sub-surface karst has preserved numerous relics and paleoenvironmental residual deposits, which show the geomorphologic karstic development. Dating of the three conspicuous calcareous levels in the cave and that of the surface basaltic mesa, to be established a few kilometres from the cave enable a chronology the stages of karstic evolution. The place of pre-quaternary vestiges in the landscapes of this country is also determined. For example, no typical landform of glacial erosion has been identified. The current karstic denudation rate is about 3 mm/Ky. The geomorphologic evolution of surface and sub-surface landforms during the quaternary era is shown and deduced from the processes, which have led to breccia formations in calcareous rocks.

EVALUATING THE HUMAN DISTURBANCE TO KARST ENVIRONMENTS IN SOUTHERN ITALY, 2006, Cal Fabiana, Parise Mario
Karst environments are extremely vulnerable to degradation and pollution. Although the carrying capacity of these natural environments is low, a variety of human activities is implemented on karst settings generating impacts at the surface and subsurface. To evaluate the degree of disturbance to typical karst environments in the Mediterranean basin, two areas have been selected in Apulia (south-eastern Italy). The human-induced effects are being assessed by applying a recently developed Karst Disturbance Index (KDI), based on a categorical framework encompassing physical, biological, and social aspects, and the evaluation of a number of indicators for each category. Scores are assigned to the indicators, to assess the severity and the extent of the human impacts on the karst environment. Knowledge of the study areas derives from a combined use of direct experience and field surveys, and the critical evaluation of data available from research articles and local organization reports. Since this approach is an holistic and comprehensive method, different scientific branches and law issues have been considered. The results so far obtained for the study areas highlight the urgent need of a sustainable management of anthropogenic activities: for example, quarrying and stone clearing, both extensively widespread, are among the most dangerous practices for karst surface and subsurface landforms in Apulia. These activities are heavily changing the original karst landscape and causing the partial or total destruction of natural caves. This study represents a preliminary evaluation of the human disturbance to karst in Apulia, but has to be necessarily integrated by further applications in other areas of the region, aimed at a better understanding of the potentiality of the approach and its feasibility in different karst settings.

Karst of Sicily and its Conservation, 2012, Di Maggio C. , Madonia G. , Parise M. , Vattano M.

In Sicily, karst is well developed and exhibits different types of landscapes due to the wide distribution of soluble rocks in different geological and environmental settings. Karst affects both carbonate rocks, outcropping in the northwest and central sectors of the Apennine chain and in the foreland area, and evaporite rocks, mainly gypsum, that characterize the central and the southern parts of the island. The carbonate and gypsum karsts show a great variety of surface landforms, such as karren, dolines, poljes, blind valleys, and fluvio-karst canyons, as well as cave systems. Karst areas in Sicily represent extraordinary environments for the study of solution forms. In addition, they are of great environmental value because they contain a variety of habitats that hold species of biogeographic significance. Unfortunately, karst areas are increasingly threatened by human activity, mainly in the form of grazing and other agricultural practices, wildfires, quarrying, urbanization, building of rural homes, and infrastructure development. The value of karst features has been recognized by the Sicilian Regional Government since 1981 when it enacted laws to create several nature reserves to preserve the peculiar karst landscapes, including caves. At present, the state of conservation of karst areas in Sicily may be considered to be at an acceptable level, yet numerous issues and difficulties need to be overcome for the effective protection and enhancement of karstlands.


Stone Forests and Their Rock Relief, 2013, Knez M. , Slabe T.

Stone forests are unique karst surface landforms which range from several dozen to hundreds of square kilometers, and their distinctiveness is reflected in the number of denominations in different parts of the world including, for example, shilintsingy, and assegai. Diverse examples of stone forests show that the shape of the pillars, as tall as up to 100 m, is mainly the consequence of the distribution and density of fissures in the rock, its stratification, and different rock strata composition. We currently divide stone forests into three types: subsoil forests, uncovered forests, and bare forests. The rock forms on the pillars are according to their development divided into subcutaneous forms, forms shaped by rainwater and composed rock forms. The largest stone forests occur in tropical and subtropical conditions where corrosion of rock is the dominant factor and mechanical weathering is not pronounced. The Lunan stone forests developed from underground karren.


Karst rivers particularity: an example from Dinaric karst (Croatia/Bosnia and Herzegovina), 2013, Bonacci O. , Zeljkovic I. , Galic A.

The very complex system of sinking, losing and underground transboundary Karst rivers, lakes and aquifers in the central part of the deep and bare Dinaric karst in Croatia and Bosnia and Herzegovina is analysed. The groundwater and surface water are hydraulically connected through numerous karst forms which facilitate the exchange of water between the surface and subsurface. A complex underground conduit system is an inherent characteristic karst system analysed. Groundwater and surface water exchange with both adjacent and distant aquifers through underground routes or inflows from surface streams and artificial reservoirs. Because of a complex surface and underground karst features, which strongly influenced its hydrological and hydrogeological regime, the main open stream flow, with a longitude of about 106 km, undergoes eight name changes. In this paper, it is noted as ‘‘the eight-name river’’. In fact, it represents one river with losing, sinking and underground stream sections. Different surface and underground karst forms play crucial roles in the way the water flowing over the surface and on the underground sections of its catchment. The analysed area is full of varied and often spectacular surface landforms, including for example the Blue and Red Lakes and the Kravice Waterfall. The analyses made in the paper show the existence of a decreasing trend of mean annual discharges on the eight-name river, which can cause numerous problems in the regional water resource management of this transboundary river and catchment.


Karst rivers particularity: an example from Dinaric karst (Croatia/Bosnia and Herzegovina), 2013, Bonacci Ognjen, Ž, Eljković, Ivana, Galić, Amira

The very complex system of sinking, losing and underground transboundary Karst rivers, lakes and aquifers in the central part of the deep and bare Dinaric karst in Croatia and Bosnia and Herzegovina is analysed. The groundwater and surface water are hydraulically connected through numerous karst forms which facilitate the exchange of water between the surface and subsurface. A complex underground conduit system is an inherent characteristic karst system analysed. Groundwater and surface water exchange with both adjacent and distant aquifers through underground routes or inflows from surface streams and artificial reservoirs. Because of a complex surface and underground karst features, which strongly influenced its hydrological and hydrogeological regime, the main open stream flow, with a longitude of about 106 km, undergoes eight name changes. In this paper, it is noted as ‘‘the eight-name river’’. In fact, it represents one river with losing, sinking and underground stream sections. Different surface and underground karst forms play crucial roles in the way the water flowing over the surface and on the underground sections of its catchment. The analysed area is full of varied and often spectacular surface landforms, including for example the Blue and Red Lakes and the Kravice Waterfall. The analyses made in the paper show the existence of a decreasing trend of mean annual discharges on the eight-name river, which can cause numerous problems in the regional water resource management of this transboundary river and catchment.


LANDFORMS OF MOUNTAINOUS KARST IN THE MIDDLE LATITUDES: REFLECTIONS, TRENDSAND RESEARCH PROBLEMS, 2013, Sauro Ugo

Volcanism-induced karst landforms and speleogenesis, in the Ankarana Plateau (Madagascar). Hypothesis and preliminary research., 2014,

The Ankarana is a limestone plateau in the northern part of Madagascar, where a cave system, more than 120 km long, has been explored. The plateau is bordered by volcanoes and is cut across by several canyons. An analysis of surface landforms and caves suggests that the karst genesis was probably initiated by volcanism beneath an impervious cover. Volcanic bulging and magma intrusions may have favored a basalt-limestone assimilation process and metamorphism. The ascent of deep volcanic fluids (CO2 and SO2) from magma degassing and from limestone metamorphism, may explain the speleogenesis. Once denuded, the karst evolved classically, but the selective erosion of metamorphosed rocks (more likely to be weathered than pure limestone), resulted in the creation of unusual landforms such as canyons and large circular basins.


Results 1 to 14 of 14
You probably didn't submit anything to search for