Karst and Cave RSS news feed Like us on Facebook! follow us on Twitter!
Community news

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 04 Jul, 2018
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

Speleology in Kazakhstan

Shakalov on 11 Jul, 2012
Hello everyone!   I pleased to invite you to the official site of Central Asian Karstic-Speleological commission ("Kaspeko")   There, we regularly publish reports about our expeditions, articles and reports on speleotopics, lecture course for instructors, photos etc. ...

New publications on hypogene speleogenesis

Klimchouk on 26 Mar, 2012
Dear Colleagues, This is to draw your attention to several recent publications added to KarstBase, relevant to hypogenic karst/speleogenesis: Corrosion of limestone tablets in sulfidic ground-water: measurements and speleogenetic implications Galdenzi,

The deepest terrestrial animal

Klimchouk on 23 Feb, 2012
A recent publication of Spanish researchers describes the biology of Krubera Cave, including the deepest terrestrial animal ever found: Jordana, Rafael; Baquero, Enrique; Reboleira, Sofía and Sendra, Alberto. ...

Caves - landscapes without light

akop on 05 Feb, 2012
Exhibition dedicated to caves is taking place in the Vienna Natural History Museum   The exhibition at the Natural History Museum presents the surprising variety of caves and cave formations such as stalactites and various crystals. ...

Did you know?

That steep is the property of inclination with a very steep gradient [16].?

Checkout all 2699 terms in the KarstBase Glossary of Karst and Cave Terms

What is Karstbase?

Search KARSTBASE:

keyword
author

Browse Speleogenesis Issues:

KarstBase a bibliography database in karst and cave science.

Featured articles from Cave & Karst Science Journals
Chemistry and Karst, White, William B.
Engineering challenges in Karst, Stevanović, Zoran; Milanović, Petar
See all featured articles
Featured articles from other Geoscience Journals
Geochemical and mineralogical fingerprints to distinguish the exploited ferruginous mineralisations of Grotta della Monaca (Calabria, Italy), Dimuccio, L.A.; Rodrigues, N.; Larocca, F.; Pratas, J.; Amado, A.M.; Batista de Carvalho, L.A.
Karst environment, Culver D.C.
Mushroom Speleothems: Stromatolites That Formed in the Absence of Phototrophs, Bontognali, Tomaso R.R.; D’Angeli Ilenia M.; Tisato, Nicola; Vasconcelos, Crisogono; Bernasconi, Stefano M.; Gonzales, Esteban R. G.; De Waele, Jo
Calculating flux to predict future cave radon concentrations, Rowberry, Matt; Marti, Xavi; Frontera, Carlos; Van De Wiel, Marco; Briestensky, Milos
See all featured articles from other geoscience journals

Search in KarstBase

Your search for surface-area (Keyword) returned 11 results for the whole karstbase:
Karst processes of the eastern upper Galilee, Northern Israel, 1974, Gerson R,
Karst processes dominate most of the geomorphic activity in the Upper Galilee, consisting mainly of dolomites and limestones. Study of the chemical evolution of water passing through the karst hydrologic cycle clearly shows that the major portion of its carbonate solute is gained subaerially and in the upper part of the vadose zone. Most cave and spring water is already saturated with respect to aragonite and calcite.The karst depressions typical to surface morphology are mostly associated with fault-line traces. Their evolution is possible mainly in areas sloping initially less that 5[deg].The absence of evolved caves, representing well-developed karst of an earlier period, is attributed mainly to the marginal climate throughout the past combined with tectonic, and hence hydrologic, instability of the region.The discharge of the karst prings shows clearly dependence on annual precipitation, with a lag of about 2 years of the response to drought or more humid periods. Long-term fluctuations are larger in the smaller T'eo Spring than in the affluent 'Enan Springs.Most of the denuded material is extracted from the region as dissolved load via underground conduits and only small amounts as clastics. Mean long-term denudation is approximately 20 mm/1000 years, averaged for the surface area contributing to the springs.In spite of the above, most topographic forms are shaped by runoff erosion, active during medium to high intensity rainstorms. Solution processes prevail during low to medium rainfall intensities, while different parts of the region are denuded at similar rates. Even in karst depressions, erosion becomes dominant after their bottoms are covered by almost impervious terra-rossa mantle

The kinetics of the reaction CO2?>H? as one of the rate limiting steps for the dissolution of calcite in the system H2O-CO2-CaCO3, 1996, Dreybrodt W, Lauckner J, Liu Zh, Svensson U, Buhmann D,
Dissolution of CaCO3 in the system H2O-CO2-CaCO3 is controlled by three rate-determining processes: The kinetics of dissolution at the mineral surface, mass transport by diffusion, and the slow kinetics of the reaction H2O CO2 = H HCO3-. A theoretical model of Buhmann and Dreybrodt (1985a,b) predicts that the dissolution rates depend critically on the ratio V/A of the volume V of the solution and the surface area A of the reacting mineral. Experimental data verifying these predictions for stagnant solutions have been already obtained in the range 0.01 cm < V/A < 0.1 cm. We have performed measurements of dissolution rates in a porous medium of sized CaCO3 particles for V/A in the range of 2 . 10(-4) cm and 0.01 cm in a system closed with respect to CO2 using solutions pre-equilibrated with an initial partial pressure of CO2 of 1 . 10(-2) and 5 . 10(-2) atm. The results are in satisfactory agreement with the theoretical predictions and show that especially for V/A < 10(-3) cm dissolution is controlled entirely by conversion of CO2 into H and HCO3-, whereas in the range from 10(-3) cm up to 10(-1) cm both CO2-conversion and molecular diffusion are the rate controlling processes. This is corroborated by performing dissolution experiments using 0.6 mu molar solutions of carbonic anhydrase, an enzyme enhancing the CO2-conversion rates by several orders of magnitude. In these experiments CO2 conversion is no longer rate limiting and consequently the dissolution rates of CaCO3 increase significantly. We have also performed batch experiments at various initial pressures of CO2 by stirring sized calcite particles in a solution with V/A = 0.6 cm and V/A = 0.038 cm. These data also clearly show the influence of CO2-conversion on the dissolution rates. In all experiments inhibition of dissolution occurs close to equilibrium. Therefore, the theoretical predictions are valid for concentrations c less than or equal to 0.9 c(eq). Summarising we find good agreement between experimental and theoretically predicted dissolution rates. Therefore, the theoretical model can be used with confidence to find reliable dissolution rates from the chemical composition of a solution for a wide field of geological applications

Precipitation kinetics of calcite in the system CaCO3-H2O-CO2: The conversion to CO2 by the slow process H?->CO2? as a rate limiting step, 1997, Dreybrodt W, Eisenlohr L, Madry B, Ringer S,
Precipitation rates of CaCO3 from supersaturated solutions in the H2O - CO2 - CaCO3 system are controlled by three rate-determining processes: the kinetics of precipitation at the mineral surface, mass transport of the reaction species involved to and from the mineral surface, and the slow kinetics of the overall reaction HCO3- H --> CO2 H2O. A theoretical model by Buhmann and Dreybrodt (1985a,b) taking these processes into account predicts that, due to the slow kinetics of this reaction, precipitation rates to the surface of CaCO3 minerals depend critically on the ratio V/A of the volume V of the solution to the surface area A of the mineral in contact with it, for both laminar and turbulent flow. We have performed measurements of precipitation rates in a porous medium of sized particles of marble, limestone, and synthetic calcite, with V/A ratios ranging from 3.10(-4) to 1.2-10(-2) cm at 10 degrees C. Calcite was precipitated from supersaturated solutions with [Ca2] approximate to 4 mmol/L and an initial P-CO2 of 5.10(-3) or 1.10(-3) atm, respectively, using experimental conditions which prevented exchange of CO2 with the atmosphere, i.e., closed system. The results are in qualitative agreement with the theoretical predictions. Agreement with the observed data, however, is obtained by modifying the rate law of Plummer et al. (1978) to take into account surface-controlled inhibition effects. Experiments with supersaturated solutions containing carbonic anhydrase, an enzyme which enhances the conversion of HCO3- into CO2, yield rates increased by a factor of up to 15. This provides for the first time unambiguous experimental evidence that this reaction is rate limiting. We have also measured precipitation rates in batch experiments, stirring sized mineral particles in a solution with V/A ranging from 0.03 to 0.75 cm. These experiments also give clear evidence on the importance of the conversion of HCO3- into CO2 as rate limiting step. Taken together our experiments provide evidence that the theoretical model of Buhmann and Dreybrodt (1985a,b) can be used to predict reliable rates from the composition of CaHCO3- solutions with low ionic strength in many geologically relevant situations. Copyright (C) 1997 Elsevier Science Ltd

The inhibiting action of intrinsic impurities in natural calcium carbonate minerals to their dissolution kinetics in aqueous H2O-CO2 solutions, 1999, Eisenlohr L, Meteva K, Gabrovsek F, Dreybrodt W,
We have measured the surface controlled dissolution rates of natural calcium carbonate minerals (limestone and marble) in H2O-CO2 solutions by using free drift batch experiments under closed system conditions with respect to CO2, at 10 degrees C with an initial partial pressure of carbon dioxide of 5.10(-2) atm. All experiments revealed reaction rates F, which can be described by the empirical relation: F-n1 = k(n1) . (1 - c/c(eq))(n1) for c < c(s), which switches to a higher order n(2) for calcium concentrations c greater than or equal to c(s) described by F-n2 = k(n2) . (1 - c/c(eq))(n2) . k(n1) and k(n2) are rate constants in mmole/(cm(2) . s), c(eq) is the equilibrium concentration with respect to calcite. The values of the constants n(1), n(2), k(n1), k(n2) and c(s) depend on the V/A ratio employed, where V is the volume of the solution and A is the surface area of the reacting mineral. Different calcium carbonate minerals exhibit different values of the kinetic constants. But generally with increasing V/A, there is a steep variation in the values of all kinetic constants, such that the rates are reduced with increasing V/A ratio. Finally with sufficiently large V/A these values become constant. These results are explained by assuming intrinsic inhibitors in the bulk of the mineral. During dissolution these are released from the calcite matrix and are adsorbed irreversibly at the reacting surface, where they act as inhibitors. The thickness d of the mineral layer removed by dissolution is proportional to the VIA ratio. The amount of inhibitors released per surface area is given by d c(int), where c(int) is their concentration id the bulk of the mineral. At low thicknesses up to approximate to 3 . 10(-4) cm in the investigated materials, the surface concentration of inhibitors increases until saturation is attained for thicknesses above this value. To analyze the surface concentration and the type of the inhibitors we have used Auger spectroscopy, which revealed the presence of aluminosilicate complexes at the surface of limestone, when a thickness of d approximate to 10(-3) cm had been removed by dissolution. In unreacted samples similar signals, weaker by one order of magnitude, were observed. Depth profiles of the reacted sample obtained by Ar-ion sputtering showed the concentration of these complexes to decrease to the concentration observed in the unreacted sample within a depth of about 10 nm. No change of the concentration with depth was observed in unreacted samples. These data suggest that complexes of aluminosilicates act as inhibitors, although other impurities cannot be excluded. Copyright (C) 1999 Elsevier Science Ltd

Variability of karstic permeability between unconfined and confined aquifers, Grand Canyon region, Arizona, 2000, Huntoon P. W. ,
Most of the ground water in the Grand Canyon region circulates to springs in the canyon through the thick, deeply buried, karstified Cambrian-Mississippian carbonate section. These rocks are collectively called the lower Paleozoic carbonates and comprise the Redwall-Muav aquifer where saturated. The morphologies of the caves in the Grand Canyon are primarily a function of whether the carbonates are unconfined or confined, a distinction that has broad significance for ground-water exploration and which appears to be generally transferable to other carbonate regions. Caves in unconfined high-gradient environments tend to be highly localized, partially saturated, simple tubes, whereas those in confined low-gradient settings are saturated 2- or even 3-dimensional mazes. The highly heterogeneous, widely spaced conduits in the unconfined settings make for difficult drilling targets, whereas the more ubiquitously distributed mazes in confined settings are far easier to target. The distinctions between the storage characteristics within the two classes are more important. There is minimal ground-water storage in the unconfined systems because cave passages tend to be more widely spaced and are partially drained. In contrast, there is maximum storage in the saturated mazes in the confined systems. Consequently, system responses to major storm recharge events in the unconfined systems are characterized by flow-through hydraulics. Spring discharge from the unconfined systems tends to be both flashy and highly variable from season to season, but total dissolved solids are small. In contrast, the pulse-through hydraulics in the artesian systems cause fluctuations in spring discharge to be highly moderated and, in the larger basins, remarkably steady. Both total dissolved solids and temperatures in the waters from the confined aquifers tend to be elevated because most of the water is derived from storage. The large artesian systems that drain to the Grand Canyon derive water from areally extensive, deep basins where the water has been geothermally heated somewhat above mean ambient air temperatures. Karst permeability is created by the flow system, so dissolution permeability develops most rapidly in those volumes of carbonate aquifers where flow concentrates. Predicting where the permeability should be best developed in a carbonate section involves determining where flow has been concentrated in the geologic past by examining the geometry and hydraulic boundary conditions of the flow field. Karstification can be expected to maximize in those locations provided enough geologic time has elapsed to allow dissolution to adjust to the imposed boundary conditions. The rate of adjustment in the Grand Canyon region appears to be related to the degree of saturation. The artesian systems are far better adjusted to hydraulic gradients than the unconfined systems, a finding that probably implies that there is greater contact between the solvent and rock in the saturated systems. These findings are not arcane distinctions. Rather, successful exploration for ground water and management of the resource is materially improved by recognition of the differences between the types of karst present. For example, the unsaturated conduit karsts in the uplifts make for highly localized, high risk drilling targets and involve aquifers with very limited storage. The conduits have highly variable flow rates, but they carry good quality water largely derived from seasonal flow-through from the surface areas drained. In contrast, the saturated basin karsts, with more ubiquitous dissolutional permeability enhancement, provide areally extensive low risk drilling targets with large ground-water storage. The ground water in these settings is generally of lesser quality because it is derived mostly from long term storage

Chemical and physical controls on waters discharged from abandoned underground coal mines, 2001, Lopez D. L. , Stoertz M. W. ,
Abandoned up-dip drift mines in high-sulphur coal are a major source of acid mine drainage (AMD) in Appalachia. Studies of mines in the Monday Creek watershed of southeastern Ohio show that mines are recharged by surface runoff into subsidence features that dilate the natural stress-relief fracture system. The direct connection between the ground surface and the mines leads to a rapid response in the hydrograph, with a one- to four-day lag between precipitation and corresponding peak mine discharge. Subsidence occurs in topographic depressions where overburden is presumably relatively thin. Subsidence features drain 20-36% of the surface area. Unsaturated storage appears to be volumetrically insignificant, so that far more recharge occurs than the 5% often assumed for this region. Mine storage can change rapidly due to subsidence recharge. Hydrologically, mines with subsidence features behave like karst systems, with meteoric quickflow' representing more than 50% of the total flow. Mine discharge concentrations are relatively uniform through time, suggesting either equilibrium controls on chemistry or drainage of a well-mixed pool, or both. Evidence of dilution by high flows is slight. The first high flows after a baseflow period show only a slight increase in concentrations, attributed to flushing of stored reaction products. Loadings (concentrations x flow) depend on volumetric discharge and as a consequence are highly variable. The Eh/pH environment in up-dip drift mines indicates that mine waters are in contact with the atmosphere at least part of the time, unlike a true groundwater. Iron buffering partly controls pH, which clusters around values of 3.6-5.0

Water budget and vertical conductance for Lowry (Sand Hill) Lake in north-central Florida, USA, 2001, Motz L. H. , Sousa G. D. , Annable M. D. ,
Water-budget components and the vertical conductance were determined for Lowry (Sand Hill) Lake in north-central Florida, USA. In this type of lake, which interacts with both the surface-water and groundwater systems, the inflow components are precipitation, surface-water inflow, groundwater inflow, and direct runoff (i.e. overland flow), and the outflow components are evaporation, groundwater outflow, and surface-water outflow. In a lake and groundwater system that is typical of many karst lakes in Florida, a large part of the groundwater outflow occurs by means of vertical leakage through an underlying confining unit to a deeper, highly transmissive aquifer called the upper Floridan aquifer. The water-budget component that represents vertical leakage to the upper Floridan aquifer was calculated as a residual using the water-budget equation. For the 13 month period from August 1994 to August 1995, relative to the surface area of the lake, rainfall at Lowry Lake was 1.55 m yr(-1), surficial aquifer inflow was 0.79 m yr(-1), surface-water inflow was 1.92 m yr(-1), and direct runoff was 0.01 m yr(-1). Lake evaporation was 1.11 m yr(-1), and surface-water outflow was 1.61 m yr(-1). The lake stage increased 0.07 m yr(-1), and the vertical leakage to the upper Floridan aquifer was 1.48 m yr(-1). Surficial aquifer outflow from the lake was negligible. At Lowry Lake, vertical leakage is a major component of the water budget, comprising about 35% of the outflow during the study period. The vertical conductance (K-V/b), a coefficient that represents the average of the vertical conductances of the hydrogeologic units between the bottom of a lake and the top of he upper Floridan aquifer, was determined to be 2.51 x 10(-4) day(-1) for Lowry Lake. (C) 2001 Elsevier Science B.V. All rights. reserved

A rare landform: Yerkopru travertine bridges in the Taurids Karst Range, Turkey, 2002, Bayari Cs,
Two examples of travertine bridges are observed at 8 to 15 in above stream level in the Lower Zamanti Basin, Eastern Taurids, Turkey. Yerkopu-1 and Yerkopru-2 bridges are currently being deposited front cool karstic groundwaters with log P-CO2 > 10(-2) atm. The surface area and the total volume of travertine in Yerkopru-1 bridge are 4350 m(2) and 40 000 m(3), whereas the values for Yerkopru-2 are 2250 m(2) and 20000 m(3), respectively. The interplay of hydrogeological Structure, local topography, calcite-saturated hanging springs, algal activity and rapid downcutting in the streambed appear to have led to the formation of travertine bridges. Aeration through cascades and algal uptake causes efficient carbon dioxide evasion that enhances travertine formation. Algal curtains aid lateral development of travertine rims across the stream. Model calculations based on a hypothetical deposit in the form of a half-pyramid implied that lateral development should have occurred from both banks of the stream in the Yerkopru-1 bridge, whereas one-sided growth has been sufficient for Yerkopru-2. The height difference between travertine springs and the main strearn appears to be a result of Pleistocene glaciation during which karstic base-level lowering was either stopped or slowed down while downcutting in the main strearn continued. Copyright (C) 2002 John Wiley Sons, Ltd

Current issues and uncertainties in the measurement and modelling of air-vegetation exchange and within-plant processing of POPs, 2004, Barber Jl, Thomas Go, Kerstiens G, Jones Kc,
Air-vegetation exchange of POPs is an important process controlling the entry of POPs into terrestrial food chains, and may also have a significant effect on the global movement of these compounds. Many factors affect the air-vegetation transfer including: the physicochemical properties of the compounds of interest; environmental factors such as temperature, wind speed, humidity and light conditions; and plant characteristics such as functional type, leaf surface area, cuticular structure, and leaf longevity. The purpose of this review is to quantify the effects these differences might have on air/plant exchange of POPs, and to point out the major gaps in the knowledge of this subject that require further research. Uptake mechanisms are complicated, with the role of each factor in controlling partitioning, fate and behaviour process still not fully understood. Consequently, current models of air-vegetation exchange do not incorporate variability in these factors, with the exception of temperature. These models instead rely on using average values for a number of environmental factors (e.g. plant lipid content, surface area), ignoring the large variations in these values. The available models suggest that boundary layer conductance is of key importance in the uptake of POPs, although large uncertainties in the cuticular pathway prevents confirmation of this with any degree of certainty, and experimental data seems to show plant-side resistance to be important. Models are usually based on the assumption that POP uptake occurs through the lipophilic cuticle which covers aerial surfaces of plants. However, some authors have recently attached greater importance to the stomatal route of entry into the leaf for gas phase compounds. There is a need for greater mechanistic understanding of air-plant exchange and the 'scaling' of factors affecting it. The review also suggests a number of key variables that researchers should measure in their experiments to allow comparisons to be made between studies in order to improve our understanding of what causes any differences in measured data between sites. (C) 2003 Elsevier Ltd. All rights reserved

Dominant Microbial Populations in Limestone-Corroding Stream Biofilms, Frasassi Cave System, Italy, 2006, Macalady Jennifer L. , Lyon Ezra H. , Koffman Bess, Albertson Lindsey K. , Meyer Katja, Galdenzi Sandro, Mariani Sandro,
Waters from an extensive sulfide-rich aquifer emerge in the Frasassi cave system, where they mix with oxygen-rich percolating water and cave air over a large surface area. The actively forming cave complex hosts a microbial community, including conspicuous white biofilms coating surfaces in cave streams, that is isolated from surface sources of C and N. Two distinct biofilm morphologies were observed in the streams over a 4-year period. Bacterial 16S rDNA libraries were constructed from samples of each biofilm type collected from Grotta Sulfurea in 2002. {beta}-, {gamma}-, {delta}-, and {varepsilon}-proteobacteria in sulfur-cycling clades accounted for [≥]75% of clones in both biofilms. Sulfate-reducing and sulfur-disproportionating {delta}-proteobacterial sequences in the clone libraries were abundant and diverse (34% of phylotypes). Biofilm samples of both types were later collected at the same location and at an additional sample site in Ramo Sulfureo and examined, using fluorescence in situ hybridization (FISH). The biomass of all six stream biofilms was dominated by filamentous {gamma}-proteobacteria with Beggiatoa-like and/or Thiothrix-like cells containing abundant sulfur inclusions. The biomass of {varepsilon}-proteobacteria detected using FISH was consistently small, ranging from 0 to less than 15% of the total biomass. Our results suggest that S cycling within the stream biofilms is an important feature of the cave biogeochemistry. Such cycling represents positive biological feedback to sulfuric acid speleogenesis and related processes that create subsurface porosity in carbonate rocks

Sensitivity of ancient Lake Ohrid to local anthropogenic impacts and global warming, 2006, Matzinger A. , Spirkovski Z. , Patceva S. , Wuest A. ,
Human impacts on the few ancient lakes of the world must be assessed, as any change can lead to an irreversible loss of endemic communities. In such an assessment, the sensitivity of Lake Ohrid (Macedonia/Albania; surface area A = 358 km(2), volume V = 55 km(3), > 200 endemic species) to three major human impacts-water abstraction, eutrophication, and global warming-is evaluated. It is shown that ongoing eutrophication presents the major threat to this unique lake system, even under the conservative assumption of an increase in phosphorus (P) concentration from the current 4.5 to a potential future 9 mg P m(-3). Eutrophication would lead to a significant reduction in light penetration, which is a prerequisite for endemic, deep living plankton communities. Moreover, a P increase to 9 mg P m(-3) would create deep water anoxia through elevated oxygen consumption and increase in the water column stability due to more mineralization of organic material. Such anoxic conditions would severely threaten the endemic bottom fauna. The trend toward anoxia is further amplified by the predicted global warming of 0.04 degrees C yr(-1), which significantly reduces the frequency of complete seasonal deep convective mixing compared to the current warming of 0.006 degrees C yr(-1). This reduction in deep water exchange is triggered by the warming process rather than by overall higher temperatures in the lake. In contrast, deep convective mixing would be even more frequent than today under a higher temperature equilibrium, as a result of the temperature dependence of the thermal expansivity of water. Although water abstraction may change local habitats, e.g., karst spring areas, its effects on overall lake properties was shown to be of minor importance

Results 1 to 11 of 11
You probably didn't submit anything to search for