Search in KarstBase
![]() |
![]() |
An integrated geophysical study was performed over a known cave in Colorado Bend State Park (CBSP), Texas, where shallow karst features are common within the Ellenberger Limestone. Geophysical survey such as microgravity, ground penetrating radar (GPR), direct current (DC) resistivity, capacitively coupled (CC) resistivity, induced polarization (IP) and ground conductivity (GC) measurements were performed in an effort to distinguish which geophysical method worked most effectively and efficiently in detecting the presence of subsurface voids, caves and collapsed features. Horseshoe Chimney Cave (HCC), which is part of a larger network of cave systems, provides a good control environment for this research. A 50 x 50 meter grid, with 5 m spaced traverses was positioned around the entrance to HCC. Geophysical techniques listed above were used to collect geophysical data which were processed with the aid of commercial software packages. A traditional cave survey was conducted after geophysical data collection, to avoid any bias in initial data collection. The survey of the cave also provided ground truthing. Results indicate the microgravity followed by CC resistivity techniques worked most efficiently and were most cost effective, while the other methods showed varying levels of effectiveness.
Kartchner Caverns, located near Benson, Arizona, USA, is an active carbonate cave that serves as the major attraction for Kartchner Caverns State Park. Low-impact development and maintenance have preserved prediscovery macroscopic cavern features and minimized disturbances to biological communities within the cave.. The goal of this study was to examine fungal diversity in Kartchner Caverns on actively-forming speleothem surfaces. Fifteen formations were sampled from five sites across the cave. Richness was assessed using standard culture-based fungal isolation techniques. A culture-independent analysis using denaturing gradient gel electrophoresis (DGGE) was used to assay evidence of community homogeneity across the cave through the separation of 18S rDNA amplicons from speleothem community DNA. The culturing effort recovered 53 distinct morphological taxonomic units (MTUs), corresponding to 43 genetic taxonomic units (GTUs) that represented 21 genera. From the observed MTU accumulation curve and the projected total MTU richness curve, it is estimated that 51 percent of the actual MTU richness was recovered. The most commonly isolated fungi belonged to the genera Penicillium, Paecilomyces, Phialophora, and Aspergillus. This culturebased analysis did not reveal significant differences in fungal richness or number of fungi recovered across sites. Cluster analysis using DGGE band profiles did not reveal distinctive groupings of speleothems by sample site. However, canonical correspondence analysis (CCA) analysis of culture-independent DGGE profiles showed a significant effect of sampling site and formation type on fungal community structure. Taken together, these results reveal that diverse fungal communities exist on speleothem surfaces in Kartchner Caverns, and that these communities are not uniformly distributed spatially. Analysis of sample saturation indicated that more sampling depth is required to uncover the full scale of mycological richness across spelothem surfaces.
This study was undertaken to gain a better understanding of karst hydrology. To do this, the present day hydrology and the paleohydrology were determined in three karst basins. The basins chosen were the Swago, Locust and Spring Creek basins in Pocahontas and Greenbrier Counties, West Virginia. A number of conventional field techniques were used successfully in this study, including the following: current meter and dye dilution gauging; dye and lycopodium stream tracing; geological and cave mapping; the setting up of stage recorders; geochemistry; and limestone erosion measurements. The climate of the region was investigated to obtain realistic precipitation, temperature and potential evaporation data over the study basins.
It was found that the mean precipitation over two of the basins was 30% higher than recorded data in the valleys. The karst development of the basins was found to take place in four major stages. These were: A) initial surficial flow, B) strike controlled drainage, C) major piracies from one sub-basin to another, and D) shortening of the flow routes. The major controls on the karst development were found to be: A) the Taggard shale, B) the strike direction, which controlled early basin development, and C) the hydraulic gradient from the sink to rising, which controlled later basin development.
To better assess the quantitative hydrology, and to assist in determining the type of unexplorable flow paths, a watershed model was developed. This modelled the streamflow from known climatic inputs using a number of measured or optimized parameters. The simulation model handled snowmelt, interception, infiltration, interflow, baseflow, overland flow, channel routing, and evaporation from the interception, soil water, ground water, snowpack and channel water. The modelled basin could be split up into 20 segments, each with different hydrological characteristics, but a maximum of 3 segments was used in this study.
A total of 29 parameters was used in the model although only 10 (other than those directly measurable) were found to be sensitive in the three basins. The simulated streamflow did not match the real flows very well due to errors in the data input and due to simplifications in the model. It was found, however, that as the proportion of the limestone in a segment increased the overland flow decreased, the interflow increased, the baseflow and interflow recessions were faster, the soil storages were smaller and the infiltration rate was higher, than in segments with a larger proportion of exposed clastics. The flow characteristics of the inaccessible conduits were inferred from the channel routing parameters and it was postulated that the majority of the underground flow in the karst basins was taking place under vadose conditions.
The risk of abrasion of rope used for abseiling and prusiking on a pitch depends on the nature of the pitch, the characteristics of rub points on it and the technique of the caving party. This paper attempts to isolate these factors and discuss methods by which a rope can be protected from them.
![]() |
![]() |